Foundation of Data Science - summary

Chapter1	1
Chapter2	2
Chapter3	6
Chapter4	9
Chapter5	11
Chapter6	16
Chapter7	17
Exercises	18
Questions	19

Chapter1

•

- Cauchy-Schwarz Inequality: $|\mathbf{x} \cdot \mathbf{y}| \leq \|\mathbf{x}\| \|\mathbf{y}\|$
- An affine hyperplane in Rⁱ is an affine subspace of dimension I-1
- A hyperplane P={x|a·x=b} is homogeneous if b=0,or equivalently, if 0 ∈ P, that is, the hyperplane goes through the origin(b 是标量,这也是为啥 x 是 I-1 的超平面)

Algorithm PERCEPTRON

Input: Normalised training sequence *S*.

Objective: Compute weight vector \mathbf{w} such that the hypothesis

 $\mathbf{x} \mapsto \operatorname{sgn}(\mathbf{w} \cdot \mathbf{x})$ is consistent with *S*.

- 1. $\mathbf{w} \leftarrow \mathbf{0}$
- 2. repeat
- 3. for all $(\mathbf{x}, y) \in S$ do
- 4. if sgn $(\mathbf{w} \cdot \mathbf{x}) \neq y$ then

5. $\mathbf{w} \leftarrow \mathbf{w} + y\mathbf{x}$

6. until sgn $(\mathbf{w} \cdot \mathbf{x}) = y$ for all $(\mathbf{x}, y) \in S$

- Normalize 是根据数据里最长的那个,都除以它
- 算法中 w 加一位 bias, 初始化都是 0
- Let S be a normalized sequence of examples such that there is a homogeneous linear separator consistent with S of margin γ . Then the perceptron algorithm applied to S finds a linear separator after at most $1/\gamma^2$ updates of **w**.

 Perceptron always finds separators if exists, but not optimal. SVM finds the one with maximum margin.

```
● 构造决策树
```

Input: Set \mathcal{A} of features, set S of examples

Objective: Compute decision tree *t*.

```
1. if S = \emptyset then
```

2. create leaf *t* with arbitrary value

▷ e.g., majority value for parent node

- 3. else if all examples in S have the same y-value then
- 4. create leaf *t* with that *y*-value
- 5. else
- 6. choose feature $A \in \mathcal{A}$ that discriminates best between examples in S
- 7. create new node t with feature A
- partition examples in S according to their A-value into parts S₁,..., S_m
- recursively call algorithm on A \ {A} and the S_i and attach resulting trees t_i as children to t

```
10. return t
```

k-CNF: Boolean formula in conjunctive normal form with clauses (= disjunctions of literals) of at most k literals(k 约束的是小括号中的项)

k-DNF: similar

conjunction: \blacksquare

disjunction: 或

CNF->DNF: straightforward

 $\mathsf{DNF}\text{-}\mathsf{>}\mathsf{CNF}\text{:}\mathsf{A}{\vee}\mathsf{B}\text{=}\mathsf{>}_{\neg}(\neg \mathsf{A} \land \neg \mathsf{B})$

• Computing a smallest decision tree for a given set of examples is NP-complete

Chapter2

•
$$\operatorname{Var}(X) = \operatorname{E}[(X - \mu)^2].$$

- For any class H, VCdim(H) <=log₂(|H|)
- If the concept class H has VC-dimension d, then for any combination function f, the class COMB_{f;k}(H) has VC-dimension O(kd log(kd))
- PAC: a learning algorithm is probably approximately correct with respect to a probability distribution D on the instance space and a target function C*, if given ε , δ > 0, it draws a training sequence S from D and produces a hypothesis H_{S, ε , δ} such that:

$$\Pr_{S \sim \mathcal{D}}\left(\operatorname{err}_{\mathcal{D}, C^*}(H_{S, \varepsilon, \delta}) < \varepsilon\right) \geq 1 - \delta$$

- If not identically distributed and not independent, the following concentration inequalities cannot be applied
- Markov's Inequality

Let X be a *nonnegative* random variable, then for all a>0,

$$\Pr(X \ge a) \le \frac{\mathsf{E}(X)}{a}$$

• Chebyshev's Inequality

Let X be a random variable. Then for all b > 0,

$$\Pr\left(|X - \mathsf{E}(X)| \ge b\right) \le \frac{\operatorname{Var}(X)}{b^2}$$

• Let X₁,..., X_n be a *pairwise* independent sequence of random variables and X := $\sum_{1...n}$ Xi. Then,

$$\operatorname{Var}(X) = \sum_{i=1}^{n} \operatorname{Var}(X_i)$$

• Law of large number

Let X1,...,Xn be a pairwise independent sequence of random variables of variance Var(Xi) <= σ^2 , and let X := $\Sigma_{1...n}$ Xi. Then for all c > 0(可以由 Chebyshev 和上面的引理证明),

$$\Pr\left(|X - \mathsf{E}(X)| \ge cn\right) \le \frac{\sigma^2}{c^2 n}$$

weak law(其实没区别,只是左侧除以 n,注意 mu=E(Xi)):

$$\lim_{n\to\infty} \Pr\left(\left|\frac{\sum_{i=1}^n X_i}{n} - \mu\right| \ge \varepsilon\right) = 0$$

• Chernoff Bounds (Multiplicative version)

Let X1,..., Xn be a sequence of independent {0,1}-valued random variables. Let X := $\sum_{1...n}$ Xi and μ :=E(X). Then for 0 <=c <=1:

$$\Pr(X \ge (1+c)\mu) \le e^{-\frac{\mu c^2}{3}} \Pr(X \le (1-c)\mu) \le e^{-\frac{\mu c^2}{2}}$$

Corollary(两式合一,上式更松,故都松):

$$\Pr\left(|X-\mu| \ge c\mu\right) \le 2e^{-\frac{\mu c^2}{3}}$$

• Hoeffding Bounds

Let X1,..., Xn be a sequence of independent identically distributed {0,1}-valued random variables. Let X := $\sum_{1...n}$ Xi and μ :=E(X). Then for 0 <=d <=1:

$$\Pr(X \ge \mu + dn) \le e^{-2nd^2} \Pr(X \le \mu - dn) \le e^{-2nd^2}$$

Corollary:

$$\Pr\left(|X-\mu| \ge dn\right) \le 2e^{-2nd^2}$$

Uniform convergence

Let H be a finite hypothesis class, ϵ , δ > 0, and

$$m \ge \frac{1}{2\varepsilon^2} \left(\ln |\mathcal{H}| + \ln \left(\frac{2}{\delta} \right) \right)$$

Then for all probability distributions D on X and all target functions C*,

$$\Pr_{\substack{S \sim \mathcal{D} \\ |S|=m}} \left(\forall H \in \mathcal{H} : |\operatorname{err}_{S}(H) - \operatorname{err}_{\mathcal{D},C^{*}}(H)| < \varepsilon \right) \geq 1 - \delta$$

(proved by Hoeffding bounds)

• Simple consistency algorithm

For a class \mathcal{H} of hypotheses, we let $\text{Cons}_{\mathcal{H}}$ be the simple learning algorithm that, given $\varepsilon, \delta > 0$,

- draws a training sequence S of length $m := \left\lceil \frac{1}{\varepsilon} \left(\ln |\mathcal{H}| + \ln(1/\delta) \right) \right\rceil$
- ▶ returns a hypothesis $H \in \mathcal{H}$ consistent with S or \bot , if there is no such hypothesis.

Corollary:

For every probability distribution D and every target function $C^* \in H$, the algorithm $Cons_H$ is probably approximately correct with respect to D and C^{*}

Almost consistency algorithm (this use uniform convergence) For a class \mathcal{H} of hypotheses, we let $ACons_{\mathcal{H}}$ be the learning algorithm

that, given $\varepsilon, \delta > 0$,

- draws a training sequence S of length $m := \left\lceil \frac{2}{\varepsilon^2} \left(\ln |\mathcal{H}| + \ln(2/\delta) \right) \right\rceil$,
- ► returns a hypothesis $H \in \mathcal{H}$ with $\operatorname{err}_{S}(H) \leq \varepsilon/2$ or \bot , if there is no such hypothesis.

Corollary:

The same, also PAC

• Simple consistency algorithm for VC Dimension

Let \mathcal{H} be a hypothesis class such that $d := VC(\mathcal{H}) < \infty$. We let $VCCONS_{\mathcal{H}}$ be the simple learning algorithm that, given $\varepsilon, \delta > 0$,

- draws a training sequence *S* of length $m := \left\lceil \frac{c}{c} \left(d \log \left(\frac{1}{c} \right) + \log \left(\frac{1}{\delta} \right) \right) \right\rceil$ for the constant *c* of the theorem,
- ▶ returns a hypothesis $H \in \mathcal{H}$ consistent with S or \bot , if there is no such hypothesis.

Corollary:

The same, also PAC

Occam's razor

Fix any description language, and consider a training sample S drawn from distribution D. With probability at least 1- δ , any rule h consistent with S that can be described in this language using fewer than(<) b bits will have errD(h) <= ϵ or $|S| = 1/\epsilon$ [b ln(2) + ln(1/ δ)]. Equivalently, with probability at least 1- δ , all rules that can be described in fewer than b bits will have errD(h) <= b ln(2)+ln(1/ δ) / |S|.

• Occam's razor application: decision tree

A tree described using O(k log₂ d)bits, b is number of features, log base is 2, k is number of nodes $|S| \ge 1/\epsilon [ck \log_2 d + ln(1/\delta)]$ for constant c

- Shatter: Given a set S of examples and a concept class H, we say that S is shattered by H if for every A ⊆ S there exists some h ∈ H that labels all examples in A as positive and all examples in S \ A as negative
- VC-dimension VC(H) of H is the size of the largest set shattered by H, or ∞ if arbitrarily large

sets are shattered by H(看的是存在性,而不是全部都)

- Common VC dimensions:
- 1. X=R², H the calss of all axis-parallel rectangles. VC=4
- 2. X=R^I, H the class of all halfspaces in X. VC=I+1
- 3. X=R, H the class of all finite subsets of X. VC= ∞

4. X= Σ * for alphabet Σ of size>=2, H :={Lw|w∈ Σ*}, 就是所有前缀, VC=2 (prove by >=, then <=)

Union of VCs

$\operatorname{VCdim}(H \cup H') \leq \operatorname{VCdim}(H) + \operatorname{VCdim}(H') + 1$

Sample size bound

Let H be a finite hypothesis class. Let $\epsilon,\!\delta\!\!>\!0$ and

$$m \geq \frac{1}{\varepsilon} \left(\ln |\mathcal{H}| + \ln \left(\frac{1}{\delta} \right) \right)$$

Then for all probability distributions D on X and all target functions C*,

$$\Pr_{\substack{S \sim \mathcal{D} \\ S \mid = m}} \left(\forall H \in \mathcal{H} : \left(\operatorname{err}_{S}(H) = 0 \implies \operatorname{err}_{\mathcal{D}, C^{*}}(H) < \varepsilon \right) \right) \ge 1 - \delta$$

• VC-dimension sample size bound

There is a constant c such that following holds. Let H be a hypothesis class of VC dimension d < ∞ .

Let $\varepsilon, \delta > 0$ and

$$m \ge \frac{c}{\varepsilon} \left(d \log \left(\frac{1}{\varepsilon} \right) + \log \left(\frac{2}{\delta} \right) \right)$$

Then for all probability distributions D on X and all target functions C*,

$$\Pr_{\substack{S \sim \mathcal{D} \\ S \mid = m}} \left(\forall H \in |\mathcal{H} : \left(\operatorname{err}_{S}(H) = 0 \implies \operatorname{err}_{\mathcal{D}, C^{*}}(H) < \varepsilon \right) > 1 - \delta$$

• Growth function sample size bound

Let H be a hypothesis class. Then for all 0< ϵ , δ <=1 and all

$$m \ge \frac{2}{\varepsilon} \left(\log(g_{\mathcal{H}}(2m)) + \log\left(\frac{2}{\delta}\right) \right)$$

Then for all probability distributions D on X and all target functions C*,

$$\Pr_{\substack{S \sim \mathcal{D} \\ |S| = m}} \left(\forall H \in \mathcal{H} : \left(\operatorname{err}_{S}(H) = 0 \implies \operatorname{err}_{\mathcal{D}, C^{*}}(H) < \varepsilon \right) > 1 - \delta$$

• Growth function of H is the function g_H : N -> N defined by

$$g_{\mathcal{H}}(n) := \max\left\{ |\mathcal{H}[Y]| \mid Y \subseteq \mathbb{X} \text{ with } |Y| = n \right\}$$

- $g_H(n)=2^n \Leftrightarrow n \le VC(H)$
- Sauer-Shelah Lemma

Let d := VC(H). Then for all $n \in N$,

$$g_{\mathcal{H}}(n) \leq \sum_{i=0}^{d} \binom{n}{i} \leq \left(\frac{en}{d}\right)^{d}$$

(This function can be used when n<=d)

- The concept class *C* is PAC-learnable with respect to the hypothesis class *H* if there is a learning algorithm that,
- 1. given ε, δ , draws a sequence S of at most m(ε, δ) training examples;
- 2. outputs a hypothesis $H \in H$;
- 3. is probably approximately correct with respect to every distribution D on X and every target function $C^* \in C$.

If H = C, we just say that C is PAC-learnable.

A concept class C is PAC-learnable if and only if VC(C) <∞

Chapter3

- 证明时可以使用: ΣXi <= f => Xi <= f (也就是个体小于等于整体)
- 1+x<=e^x,涉及到 In 就想想这个
- 就我的理解,所有本章算法都是 multiplicative weights update 算法。
- Weighted majority algorithm

For some constant $0 < \alpha \leq 1/2$.

•
$$w_i^{(1)} := 1$$
 for all $i \in [n]$.

Intuition: Initially, we give the same weight to each expert's advice.

► For
$$t \ge 1$$
, $d^{(t)} := \begin{cases} 1 & \text{if } \sum_{i \in [n]} w_i^{(t)} \ge \sum_{i \in [n]} w_i^{(t)}, \\ a_i^{(t)=1} & a_i^{(t)=0} \end{cases}$
0 otherwise.

Intuition: Buy, if the weighted majority of the experts recommends it.

For $t \ge 1$ and $i \in [n]$, $w_i^{(t+1)} := \begin{cases} w_i^{(t)} & \text{if } a_i^{(t)} = p^{(t)}, \\ (1-\alpha)w_i^{(t)} & \text{otherwise} \end{cases}$

Intuition: Decrease weights of experts with wrong prediction by a factor $(1 - \alpha)$.

Analysis of above algorithm

For every $t \ge 1$ and every $i \in [n]$,

$$\ell^{(t)} \leq \frac{2\ln n}{\alpha} + 2(1+\alpha)\ell_i^{(t)}$$

Intuition: The inequality holds, in particular, for i being the best expert. Thus in the long run, our algorithm guarantees our losses to be at most a bit more than twice the losses of the best expert.

Multiplicative weight update algorithm

For some constant $0 < \alpha < 1$.

- $w_i^{(1)} := 1$ for all $i \in I$.
- For $t \ge 1$ and $i \in I$,

$$w_i^{(t+1)} := (1-\alpha)^{L_{ij}(t)} w_i^{(t)}$$

每回合按照如下式子随机选取 expert

$$\Pr_{\mathcal{D}^{(t)}}(\{i\}) := p_i^{(t)} := \frac{w_i^{(t)}}{\sum_{i' \in I} w_{i'}^{(t)}}$$

(这之所以是之前的扩展,因为 Lij 是[0,1],可以变动的)

Analysis for above

For every $t \ge 1$ and every $i \in I$,

$$\sum_{s=1}^{l} L^{(s)} \leq \frac{\ln n}{\alpha} + (1|+\alpha) \sum_{s \leq t} L_{ij^{(s)}}$$

可以看出 the randomized strategy of the multiplicative weight update algorithm beats the deterministic strategy of the weighted majority algorithm by almost a factor 2

Weak learning

Let $0 \le \gamma < 1/2$. A learning algorithm is weak learning algorithm with error parameter γ (short: γ -weak learner) for C if, given $\delta > 0$, the algorithm draws a sequence S of $m = m(\delta)$ examples and computes a hypothesis H such that for all probability distributions \mathcal{D} on \mathbb{X} and all $C^* \in C$,

$$\Pr_{\mathcal{S}\sim\mathcal{D}}\left(\operatorname{err}_{\mathcal{D},\mathcal{C}^{*}}\left(\mathcal{H}\right)<\gamma\right)\geq1-\delta.$$

Strong learning (PAC-learning)

A learning algorithm is a PAC-learning algorithm or strong learning algorithm (short: strong learner) for C if, given $\varepsilon, \delta > 0$, the algorithm draws a sequence S of $m = m(\varepsilon, \delta)$ examples and computes a hypothesis H such that for all probability distributions \mathcal{D} on \mathbb{X} and all $C^* \in C$,

$$\Pr_{S \sim \mathcal{D}}\left(\operatorname{err}_{\mathcal{D}, C^{*}}\left(H\right) < \varepsilon\right) \geq 1 - \delta$$

• AdaBoost (means adaptive updates of the distribution, put less weight on those correct)

- 1. Idea
 - a) Repeatedly run the weak learner on subsets of the initial training set.
 - b) These subsets are randomly drawn from different probability distributions.
 - c) The distributions are adapted in each round using multiplicative weight updates.
- 2. Weak learner W
 - a) We only run W with examples drawn according to probability distributions D on X
 - b) Call a hypothesis good if it has true error less than γ . W generates a good hypothesis with probability at least 1- δ
 - c) As we know D and the correct labels for samples from X, we can check if a hypothesis is good.
 - d) We run W on D until it returns a good hypothesis, if bad, re-run
- 3. MWU algorithm

$$L_{ij} := \begin{cases} 1 & \text{if } j(x_i) = c_i \\ 0 & \text{otherwise.} \end{cases}$$

Entries for loss matrix are posistive

Update parameter α =1/2 - γ (注意, 这就和 weak learner W 的真值误差产生了联系, W 越差, 学的步伐越小)

- 4. Boosting algorithm
 - ► We consider a run of the MWU algorithm where j^(s) is a hypothesis obtained by running W on D^(s) until it returns a good hypothesis.
 - We run the algorithm for $t = \frac{2}{\alpha^2} \ln \frac{1}{\epsilon}$ rounds.
 - ► The final hypothesis *H* that we return is defined by

$$H(x) := \begin{cases} 1 & \text{if } |\{s \le t \mid j^{(s)}(x) = 1\}| \ge t/2, \\ 0 & \text{otherwise.} \end{cases}$$

Thus err_s(H)< ε

This is for S, so setting ε can force H to be correct on all examples H may from a class H* which is still simple

可以看出,训练多少轮和 W 的真值误差,以及想要达到的真值误差都有关系

If we want H to classify all examples correctly, we need to take $\epsilon \approx 1/n$, and thus run the MWU algorithm for O(log n) rounds

This majority function has VC dimension bound by $O(\log n * VC(H))$, so with large n, we can show hypothesis from H* has small error

Bandit learning

Observe only payoff of machine we pick, not the others; setting is adversarial, the adversary knows our strategy

Maximal single-action reward:

$$q_{\max}^{(t)} := \max_{a \in [n]} \sum_{s=1}^{l} q_a^{(s)}$$

Reward:

$$q(\mathbf{a}) := \sum_{s=1}^{t} q_{a^{(s)}}^{(s)}$$

Weak regret:

$$r(\mathbf{a}) := q_{\max}^{(t)} - q(\mathbf{a})$$

Algorithm EXP3 Parameter: γ , where $0 < \gamma \le 1$. Initialisation: $w_a^{(1)} := 1$ for all $a \in [n]$

1. for s = 1, 2, ..., t do

2. \mathcal{D}^{s} probability distribution defined by

$$\Pr_{\mathcal{D}^{(s)}}(\{a\}) := p_a^{(s)} := (1 - \gamma) \frac{w_a^{(s)}}{\sum_{a'=1}^n w_{a'}^{(s)}} + \frac{\gamma}{n}$$

3. action $a^{(s)}$ drawn randomly from $\mathcal{D}^{(s)}$

4. reward
$$q^{(s)} \leftarrow q_{q^{(s)}}^{(s)}$$

5. weights are updated as follows:

$$w_a^{(s+1)} \leftarrow \begin{cases} w_a^{(s)} \cdot \exp\left(\frac{\gamma q^{(s)}}{n p_a^{(s)}}\right) & \text{if } a = a^{(s)}, \\ w_a^{(s)} & \text{otherwise} \end{cases}$$

Exp3 stands for exponential-weight algorithm for exploration and exploitation

Parameter γ determines the tradeoff between exploration and expectation: the closer γ gets to 1, the more weight we put on exploration

Expect regret for Exp3:

$$r(Exp3) \leq (e-1) \cdot \gamma \cdot q_{\max}^{(t)} + \frac{1}{\gamma} \cdot n \cdot \ln n$$

Strong regret: for best possible sequence of actions

Chapter4

 the random projection theorem the probability of the length of the projection of a single vector differing significantly from its expected value is exponentially small in k

SVD 就是确定一个最长投影 v, 再确定一个最长 v, 一直到满秩了。不过实际计算时, 是矩阵的特征值求解。

• Universal: A family H of hash functions from U to T is universal if for all distinct x, $x' \in U$,

 $\Pr_{h \in \mathcal{H}} \left(h(x) = h(x') \right) \le \frac{1}{|\mathbb{T}|}$

• k-universal: if for all distinct x1,...xk $\in U$,

$$\Pr_{h\in\mathcal{H}}\left(h(x_1)=h(x_2)=\ldots=h(x_k)\right)\leq\frac{1}{|\mathbb{T}|^{k-1}}$$

Strongly k-universal if for all distinct x1,...,xk ∈U and all y1,...yk ∈T,

$$\Pr_{h\in\mathcal{H}}\left(h(x_1)=y_1\wedge\ldots\wedge h(x_k)=y_k\right)=\frac{1}{|\mathbb{T}|^k}$$

● 高维球 concentration near equator

Let $\ell \geq 3$ and $c \geq 1$. Then

$$\operatorname{vol}\left(\left\{\mathbf{x}\in B^{\ell}\mid |x_{1}|>\frac{c}{\sqrt{\ell-1}}\right\}\right)\leq \frac{2}{c}e^{-c^{2}/2}$$

1

● Spherical Gaussian distribution(各向 variance 都是 theta^2)

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{\ell/2} \sigma^{\ell}} \exp\left(-\frac{\|\mathbf{x} - \boldsymbol{\mu}\|^2}{2\sigma^2}\right)$$

Gaussian Annulus Theorem

Let $b \leq \sqrt{\ell}$, and let $\mathbf{x} \in \mathbb{R}^{\ell}$ be drawn from an ℓ -dimensional spherical Gaussian distribution with mean $\mu = 0$ and variance $\sigma^2 = 1$. Then

$$\Pr\left(\sqrt{\ell} - b < \|\mathbf{x}\| < \sqrt{\ell} + b\right) \ge 1 - 3e^{-cb^2},$$

for a constant c > 0 not depending on ℓ and b.

Reduction mapping

In the following, we let $k, \ell \in \mathbb{R}$, where $k \leq \ell$. We draw vectors $\mathbf{u}_1, \ldots, \mathbf{u}_k \in \mathbb{R}^{\ell}$ independently from the ℓ -dimensional spherical Gaussian distribution with mean $\mathbf{0}$ and variance σ^2 in each direction and let

$$U := \frac{1}{\sqrt{k}} \begin{pmatrix} \mathbf{u}_1 \\ \vdots \\ \mathbf{u}_k \end{pmatrix} \in \mathbb{R}^{k \times \ell}.$$

● Random projection theorem(就是上面降维 mapping 不错,和原来接近)

For all $\mathbf{x} \in \mathbb{R}^{\ell}$ and all $\varepsilon > 0$,

$$\Pr\left(\left|\|U\mathbf{x}\|-\|\mathbf{x}\|\right| > \varepsilon \|\mathbf{x}\|\right) \le 3e^{-c\varepsilon^2 k},$$

where the probability is over the choice of the vectors $\mathbf{u}_1, \ldots, \mathbf{u}_k$ used to construct the matrix U and c is the constant from the Gaussian Annulus Theorem.

Johnson-Lindenstrauss Lemma (保持相对距离)

Let $0 < \varepsilon < 1$ and $k, \ell, n \in \mathbb{N}$ such that $k \ge \frac{3}{c\varepsilon^2} \ln n$, where c is the constant from the Gaussian Annulus Theorem. Then for every set $X \subseteq \mathbb{R}^{\ell}$ of size |X| = n,

$$\Pr\left(\forall \mathbf{x}, \mathbf{y} \in X : (1-\varepsilon) \|\mathbf{x} - \mathbf{y}\| \le \|U\mathbf{x} - U\mathbf{y}\| \le (1+\varepsilon) \|\mathbf{x} - \mathbf{y}\|\right) \ge 1 - \frac{3}{2n}$$

- Principle component analysis, we extract features that are combinations of original features and try to minimize the squared Euclidean distance between original data and their projections
- SVD, 怎么一个一个找

The first singular value of A is

$$\sigma_1(A) := \max \left\{ \|A\mathbf{v}\| \mid \mathbf{v} \in \mathbb{R}^{\ell} \text{ width } \|\mathbf{v}\| = 1 \right\}.$$

A first right-singular vector of A is a vector $\mathbf{v} \in \mathbb{R}^{\ell}$ with $\|\mathbf{v}\| = 1$ and $\|A\mathbf{v}\| = \sigma_1(A)$.

之后类似,不过都得和之前的垂直

- Singular value 个数等于秩
- SVD,写成向量形式

Let $A \in \mathbb{R}^{n \times \ell}$ with singular values $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_r$, corresponding right-singular vectors $\mathbf{v}_1, \ldots, \mathbf{v}_r$ and left-singular vectors $\mathbf{u}_1, \ldots, \mathbf{u}_r$. Then

$$A = \sum_{j=1}^{\prime} \sigma_j \mathbf{u}_j \mathbf{v}_j^{\mathsf{T}}$$

Relations between singular values and eigenvalues

If A is symmetric, then its singular values are the absolute values of the nonzero eigenvalues.

● Best-fit subspaces(当初贪心算法,所以前 k 都是最好的 k 个)

 V_k is a best-fit k-dimensional subspace for A, that is, a k-dimensional subspace $V \subseteq \mathbb{R}^{\ell}$ that minimises the sum of the squared distances of the vectors \mathbf{a}_i to V.

• Rank-k approximation of a matrix

 $A \in \mathbb{R}^{n \times \ell}$ with singular values $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_r$, corresponding right-singular vectors $\mathbf{v}_1, \ldots, \mathbf{v}_r$ and left-singular vectors $\mathbf{u}_1, \ldots, \mathbf{u}_r$.

For $1 \leq k \leq r$, let

$$\boldsymbol{A}_{\boldsymbol{k}} := \sum_{j=1}^{k} \sigma_j \mathbf{u}_j \mathbf{v}_j^{\mathsf{T}}$$

• Frobenius norm

$$\|\boldsymbol{A}\|_{\boldsymbol{F}} = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{\boldsymbol{\ell}} a_{ij}^{2}}.$$

● 刚才的 norm 的性质

Let $A \in \mathbb{R}^{n \times \ell}$ with singular values $\sigma_1 \ge \ldots \ge \sigma_r > 0$. Then

$$\|A\|_F = \sqrt{\sum_{i=1}^r \sigma_i^2}.$$

● 2-norm(就是第一 singular value)

$$\|A\|_2 = \sup_{\substack{\mathbf{v}\in\mathbb{R}^\ell\\\|\mathbf{v}\|=1}} \|A\mathbf{v}\|.$$

Chapter5

- Variance= $E[x^2] (E[x])^2$ = $\frac{1}{N} \sum_{u \in \mathbb{U}} (f_u - E(f_u))^2$
- Simple sampling algorithm

Algorithm SIMPLESAMPLE

Input: Stream a_1, \ldots, a_n 1. $i \leftarrow 0$ 2. while not end of stream do 3. $i \leftarrow i + 1$ 4. $sample \leftarrow a_i$ with probability 1/i \triangleright otherwise sample keeps its current value 5. return sample • Reservoir sampling

Algorithm RESERVOIRSAMPLE

Input: Stream $a_1, \ldots, a_n, k \leq n$ 1. for i = 1, ..., k do 2. sample[i] $\leftarrow a_i$ \triangleright variable *i* has value *k* now 3. while not end of stream do 4. $i \leftarrow i + 1$ $replace \leftarrow \begin{cases} true & \text{with probability } \frac{k}{i}, \\ false & \text{otherwise} \end{cases}$ 5. 6. if replace then 7. choose j uniformly at random from [k]8. $sample[j] \leftarrow a_i$ 9. return sample

Universal hashing

A family \mathcal{H} of hash functions from \mathbb{U} to \mathbb{T} is universal if for all distinct $x, x' \in \mathbb{U}$,

$$\Pr_{h\in\mathcal{H}}\left(h(x)=h(x')\right)\leq\frac{1}{|\mathbb{T}|}$$

● 构造 universal hashing

Let $M \leq N$, and let $p \geq N$ be a prime. Suppose that $\mathbb{U} = \{0, \ldots, N-1\}$ and $\mathbb{T} = \{0, \ldots, M-1\}$. For $a, b \in \mathbb{N}$, define $h_{a,b} : \mathbb{U} \to \mathbb{T}$ by

$$h_{a,b}(x) := ((ax+b) \mod p) \mod M$$

Then the family $\mathcal{H} := \{h_{a,b} \mid a, b \in \{0, \dots, p-1\}, a \neq 0\}$ is universal.

Collision

Let \mathcal{H} be a universal family of hash functions from \mathbb{U} to $\{0, \ldots, 2^k - 1\}$ Then for every $\delta > 0$ and every set $S \subseteq \mathbb{U}$ of cardinality $|S| \leq n$,

$$\mathsf{E}_{h\in\mathcal{H}}\left(\operatorname{coll}(h,S)\right)=\frac{n(n-1)}{2^{k+1}}$$

and $\Pr_{h\in\mathcal{H}}\left(\operatorname{coll}(h,S)\geq \frac{n^2}{\delta 2^{k+1}}\right)\leq \delta.$

k-universal

Let $k \ge 2$, and let \mathcal{H} be a family of hash functions from \mathbb{U} to \mathbb{T} . (1) \mathcal{H} is *k*-universal if for all distinct $x_1, \ldots, x_k \in \mathbb{U}$,

$$\Pr_{h\in\mathcal{H}}\left(h(x_1)=h(x_2)=\ldots=h(x_k)\right)\leq\frac{1}{|\mathbb{T}|^{k-1}}$$

(2) \mathcal{H} is strongly *k*-universal if or all distinct $x_1, \ldots, x_k \in \mathbb{U}$ and all $y_1, \ldots, y_k \in \mathbb{T}$,

$$\Pr_{h\in\mathcal{H}}(h(x_1)=y_1\wedge\ldots\wedge h(x_k)=y_k)=\frac{1}{|\mathbb{T}|^k}$$

- Strong k-universal => k-universal; 2-universal ⇔ universal
- Another characteristic

Let $2 \le k \le |\mathbb{U}|$, and let \mathcal{H} be a family of hash functions from \mathbb{U} to \mathbb{T} . Then \mathcal{H} is strongly k-universal if and only if it has the following two properties.

k-Independence: For all distinct $x_1, \ldots, x_k \in \mathbb{U}$ and all $y_1, \ldots, y_k \in \mathbb{T}$,

$$\Pr_{h\in\mathcal{H}}\left(\bigwedge_{i=1}^{k}h(x_i)=y_i\right)=\prod_{i=1}^{k}\Pr_{h\in\mathcal{H}}\left(h(x_i)=y_i\right)$$

That is, the indicator random variables for the events $h(x_i) = y_i$ are independent.

Uniformity: For all $x \in \mathbb{U}$ and $y \in \mathbb{T}$,

$$\Pr_{h\in\mathcal{H}}(h(x)=y)=\frac{1}{|\mathbb{T}|}$$

- 构造 strongly k-universal(到比自己大)
- We choose a prime power $q \ge N$ and let \mathbb{F}_q denote the field with q elements (unique up to isomorphism).
- We fix an arbitrary embedding g₁ : U → F_q and an arbitrary bijection g₂ : F_q → {0, ..., q − 1}.
- For a = (a₀,..., a_{k-1}) ∈ 𝔽^k_q, let p_a : 𝔽_q → 𝔽_q be the polynomial function

$$p_{a}(x) = a_{0} + a_{1}x + a_{2}x^{2} + \ldots + a_{k-1}x^{k-1},$$

and let $f_a : \mathbb{U} \to \{0, \dots, q-1\}$ be the function $g_2 \circ p_a \circ g_1$.

● 构造到比自己小很多

It remains to construct a strongly k-universal family mapping \mathbb{U} to $\mathbb{T} := \{0, \dots, M-1\}$ for an $M \ll N$.

- We choose a prime power $q \ge N$ and define the mappings $f_{\mathsf{a}} : \mathbb{U} \to \{0, \dots, q-1\}$ for $\mathbf{a} \in \mathbb{F}_q^k$ as on the previous slide.
- We define functions $h_a : \mathbb{U} \to \{0, 1, \dots, M-1\}$ by

$$h_{\mathrm{a}}(x) := f_{\mathrm{a}}(x) \mod M.$$

• We let $\mathcal{H}_{q,M}^k := \{h_a \mid \mathbf{a} \in \mathbb{F}_q^k\}.$

还得 M devides q, 才是 strongly k-universal(否则是近似于)

Zcount

(前提是数据流是 uniformly 选取的,不现实,所以才有了其他的方法,才要 hash)

Algorithm ZCOUNT

1. $z \leftarrow 0$

- 2. while not end of stream do
- 3. $a \leftarrow \text{next stream element}$

4. if
$$zeros(a) > z$$
 then

5. $z \leftarrow \operatorname{zeros}(a)$

6. return $2^{z+1/2} \ge z$ maximum number of zeros of stream elements

Flajolet-Martin Algorithm

Let H be a strongly 2-universal family of hash functions from U to [M], where M is the first power of 2 greater than or equal to N.

Algorithm FMCOUNT

1. *h* drawn uniformly at random from \mathcal{H}

- 2. $z \leftarrow 0$
- 3. while not end of stream do
- 4. $a \leftarrow$ next stream element
- 5. if $\operatorname{zeros}(h(a)) > z$ then
- 6. $z \leftarrow \operatorname{zeros}(h(a))$
- 7. return $2^{z+1/2}$

MCount

就是 run FMCount 2k-1 个,返回中位数

• *p*th frequency moment

$$F_p(\mathbf{a}) := \sum_{u \in \mathbb{U}} (f_u(\mathbf{a}))^p$$

AMS-Estimator

Algorithm AMS-ESTIMATOR

- 1. i = 0
- 2. while not end of stream do
- 3. $i \leftarrow i + 1$
- 4. with probability 1/i do
- 5. $a \leftarrow a_i$
- $6. \qquad r \leftarrow 0$
- 7. if $a_i = a$ then
- 8. $r \leftarrow r+1$

9. return
$$i(r^k - (r-1)^k)$$

(E(return) = Fk, 这个方法接近真实的 p 不到 1/2, 所以没法 boost)

• Tug-of-War

Algorithm TUG-OF-WAR

- 1. draw h uniformly at random from \mathcal{H}
- 2. *x* ← 0
- 3. while not end of stream do
- 4. $a \leftarrow$ next element from stream
- 5. $x \leftarrow x + h(a)$
- 6. return x^2

(更好,不过要求 strongly 4-universal,且映射到{-1,1},且针对 F2) (E(B)=F₂ and Var(B)<=2F₂²)

• Averaging the Tug-of-War estimator

Algorithm Avg-ToW(k)

- 1. draw h_1, \ldots, h_k independently from \mathcal{H}
- 2. for i = 1, ..., k do
- 3. $x_i \leftarrow 0$
- 4. while not end of stream do
- 5. $a \leftarrow$ next element from stream
- 6. for i = 1, ..., k do

7.
$$x_i \leftarrow x_i + h_i(a)$$

8. return $\frac{1}{k} \sum_{i=1}^{k} x_i^2$

Simple sketch

Algorithm SIMPLE SKETCH(k)

- 1. draw *h* from \mathcal{H} .
- 2. for i = 1, ..., k do
- 3. S[i] := 0
- 4. while not end of stream do
- 5. $(a, c) \leftarrow$ next update

6.
$$S[h(a)] \leftarrow S[h(a)] + c$$

7. return S

Count min sketch

Algorithm COUNT MIN SKETCH(k, ell)

1. draw h_1, \ldots, h_ℓ independently from \mathcal{H} .

- 2. for i = 1, ..., k do 3. for $j = 1, ..., \ell$ do 4. $S[i, j] \leftarrow 0$ 5. while not end of stream do 6. $(a, c) \leftarrow$ next update 7. for $j = 1, ..., \ell$ do 8. $S[h_j(a), j] \leftarrow S[h_j(a), j] + c$ 9. return S
- $d_u^* := \min_{j \in [\ell]} S[h_j(u), j]$ 最后用的是最小值当作 d*
- CM heavy hitter

Algorithm CM HEAVY HITTERS (k, ℓ, τ)

- \blacktriangleright compute a CM sketch S with parameters k,ℓ
- \blacktriangleright maintain $\|\boldsymbol{d}\|_1$ during the computation
- ► during the computation, maintain a set *H* of elements $u \in \mathbb{U}$ whose estimated value $d_u^* := \min_j S[h_j(u), j]$ is at least $\tau \|\mathbf{d}\|_1$
- ► after each update (or whenever H gets too large), remove those elements u whose value d^{*}_u has dropped below τ ||**d**||₁ from H
- return all $u \in H$ with $d_u^* \geq \tau \|\mathbf{d}\|_1$

注意到,少写一个步骤,就是把当前这个添加到 H 中

Chapter6

• Map worker failure: completed 也 reset to idle; Reduce worker: completed are not reset Matrix multiplication

1.

First Map-Reduce Round

MAP function: On input (A, (i, j, v), emit (j, (A, i, v))). On input (B, (j, k, w)), emit (j, (B, k, w)). REDUCE function: On input (j, values), emit ((i, k), vw) for all

 $(A, i, v), (B, k, w) \in values.$

Second Map-Reduce Round

MAP function: The identity function: on input ((i, k), x), emit ((i, k), x). REDUCE function: On input ((i, k), values), compute the sum x^* of all $x \in values$ and emit $(C, (i, k, x^*))$.

2.

MAP function: On input (A, (i, j, v)), emit all key-value pairs ((i, k), (A, j, v)) for $k \in [n]$.

On input (B, (j, k, w)), emit all key-value pairs ((i, k), (B, j, w)) for $i \in [\ell]$.

REDUCE function: On input ((i, k), values), compute the sum x of all vw for $(A, j, v), (B, j, w) \in values$ and emit (C, (i, k, x))

Communication cost: sum of input size to all tasks

- 1. 2plm + 2qmn + 2pqlmn
- 2. plm + qmn + (p + q)lmn:

• Replication rate: Number of key-value pairs produced by all *map* tasks divided by the input size

• maximum load: Maximum input length for single *reducer* or reduce task

1. pl+qn; pqm

2. pm+qm

▶ 单轮,但是减少 communication 版本

Choose parameter s = number of stripes. Let $h : [n] \rightarrow [s]$ be the mapping that assigns each row/column index to its stripe. For example, $h(i) = \lceil is/n \rceil$.

MAP function: On input (A, (i, j, v)), emit all key-value pairs ((h(i), u), (A, i, j, v)) for $u \in [s]$. On input (B, (j, k, w)), emit all key-value pairs ((t, h(j)), (B, j, k, w)) for $t \in [s]$.

REDUCE function: On input ((t, u), values), for all $i \in h^{-1}(t)$ and all $k \in h^{-1}(u)$, compute the sum

$$c_{ik} := \sum_{(A,i,j,v), (B,j,k,w) \in values} vw$$

and emit $(C, (i, k, c_{ik}))$.

Multiway joins-Hypercube algorithm

MAP function: On input $(R_i, (a_1, \ldots, a_{k_i}))$, emit all pairs

$$((p_1, \ldots, p_k), (R_i, (a_1, \ldots, a_{k_i})))$$

such that

▶ $p_j \in [s_j]$ for all $j \in [k]$, ▶ $p_j = h_j(a_{j'})$ for all $j \in [k], j' \in [k_i]$ such that $A_{jj'} = A_j$.

REDUCE function: On input $(\overline{p}, values)$, compute

 $\mathcal{Q}(\overline{p}) := \mathcal{R}_1(\overline{p}) \bowtie \ldots \bowtie \mathcal{R}_m(\overline{p}),$

where

 $\mathcal{R}_i(\overline{p}) := \{t \mid (R_i, t) \in values\},\$

and emit all pairs (Q, t) for $t \in \mathcal{Q}(\overline{p})$.

• Replication rate:

Chapter7

Different "connect"

Connected is usually associated with undirected graphs (two way edges): there is a path between every two nodes.

Strongly connected is usually associated with directed graphs (one way edges): there is a route between every two nodes.

Complete graphs are undirected graphs where there is an edge between every pair of nodes

- Strongly connected => average probability is stationary
- e_{n+1}={0,0,...,0,1} (n 个 0)
- markov chain is connected if Graph is strongly connected
- $p_t = p_0 Q^t$
- Aperiodic if the greatest common divisor of the length of all cycles in GQ is 1. A Markov chain is ergodic if it is connected and aperiodic.
- Connected a-> π , ergodic p-> π
- 任意构造 ergodic

Let $Q \in \mathbb{R}^n$ be the transition matrix of a connected Markov chain. Then for every α with $0 < \alpha < 1$,

$$\alpha Q + (1-\alpha)I$$
,

.

where I is the $(n \times n)$ identity matrix, is the transition matrix of an ergodic Markov chain with the same stationary distribution.

• MCMC-Metropolis-Hastings Algorithm

 $q_{uv} := \begin{cases} \frac{1}{d} & \text{if } uv \in E(G) \text{ and } p(v) \ge p(u) \\ \frac{1}{d} \cdot \frac{p(v)}{p(u)} & \text{if } uv \in E(G) \text{ and } p(v) < p(u) \\ 1 - \sum_{v' \in N(u)} q_{uv'} & \text{if } u = v \\ 0 & \text{otherwise} \end{cases}$ 1. $b \leftarrow \begin{cases} 1 & \text{with probability } \deg(u)/d, \\ 0 & \text{otherwise} \end{cases}$ 2. if b = 1 then choose a neighbour $v' \in N(u)$ in G uniformly at random 3. 4. if $p(v') \ge p(u)$ then 5. $v \leftarrow v'$ 6. else $v \leftarrow \begin{cases} v' \text{ with probability } p(v')/p(u) \\ u \text{ with probability } 1 - p(v')/p(u) \end{cases}$ 7. 8. else 9. $v \leftarrow u$

10. return v

Page rank

$$q_{ij} = \begin{cases} \frac{1}{d_i^+} & \text{if } (i,j) \in E(G_{\text{web}}) \\ 0 & \text{otherwise.} \end{cases}$$

Initialize n webpages with w=(w1,w2...wn)

w <-wQ

wj= \sum wi/di+(i,j) \in E(Gweb)

这个就成了,但是网络不连接或者 ergodic (对于一个 state,下面二者选一) •

$$q_{ij}^* := \begin{cases} (1-r)q_{ij} + \frac{r}{n} & \text{if } d^+(i) > 0, \\ \frac{1}{n} & \text{if } d^+(i) = 0. \end{cases}$$

Exercises

Exercise3 Fibonacci:

$$\frac{(\frac{1+\sqrt{5}}{2})^{n}-(\frac{1-\sqrt{5}}{2})^{n}}{\sqrt{5}}$$

• Exercise5

100 维球内生成点

每个点,gaussian100次,生成的向量除以长度√(x1^2,x2^2...x100^2),现在在面上了 再选长度,uniformly distribute from 0~1,开 100次方根。两者一乘,就得了。 下面这个是球面的:

We can draw a unit vector $\mathbf{x} \in \mathbb{R}^{\ell}$ uniformly at random by drawing $\mathbf{y} \in \mathbb{R}^{\ell}$ from an ℓ -dimensional spherical Gaussian with mean $\mathbf{0}$ and variance 1 and letting

$$\mathbf{x} := \frac{\mathbf{y}}{\|\mathbf{y}\|}.$$

- VC of triangles in 2-d is 7.
- 与坐标轴平行的直角三角形,左下角是直角。Vc为4
- (1-x)^m<=e^{-mx}
- •

Questions

- 1. Chapter2, P27, yellow remark
- Chapter2, log and ln (find out their base)
 Ln 应该是自然对数, log 很可能是 2
- 3. Chapter2, P29, yellow remark
- 4. Chapter3, P11, Taylor expansion, $ln(1 x) >= -x x^2 (0 <= x <= 1/2)$
- 5. Chapter3, P23, yellow remark
- 6. Chapter7, markov chain and markov chain monte carlo difference?
- 7. Tug of war 助教的代码有地方有问题。事实上,双射是怎么实现的。
- 8. 有空的话看看 tug of war 里助教说的 median of means 怎么实现的

考试卷子第三题,b,c,d Exercise sheet 3, ex3, 斐波那契 Exercise sheet 7, ex1, c,应该是逆矩阵,不是转置。看看答案。最后要不要求倒数

ε,δ αβχδεφγηιφκλμνοπθρστυσωξψζ θωερτψυιοπασδφγηφκλζξχσβνμ