Foundation of Data Science - summary

(01 F- T =T ot IO OO TUPRPPPPPRT 1
(01 F- T =T o O PO PP UPTRP PP 2
(01 g =Y 1 TSRS 6
(01 g =Y 1= o SRR 9
(01 0= 01 (< TR 11
(01 F- T =T o ST OO PO PT PSP PPRRPPPOPI 16
(01 - T LT o OO OO PT PSP PPRRPPPTOP 17
EXEICISES ..ttt e e s a e s a e e s 18
QUESTIONS . 19

Chapterl

-yl < [Ix[[]lv

An affine hyperplane in R is an affine subspace of dimension I-1

® Cauchy-Schwarz Inequality:

® A hyperplane P={x|a*x=b} is homogeneous if b=0,or equivalently, if 0 € P, that is, the
hyperplane goes through the origin(b JEbr i, XA AME x 42 I-1 18 F)
Algorithm PERCEPTRON

Input: Normalised training sequence S.

Objective: Compute weight vector w such that the hypothesis
X — sgn(w - x) is consistent with S.

1. w0

2. repeat

3 for all (x,y) € S do

4. if sgn(w - x) # y then

5 W < W + ¥X

6. until sgn(w -x) =y for all (x,y) € S

® Normalize JEMRYEHIE RHA A, HERLE
Hm woin—fr bias, HIAHAHEZ O

® Let S be a normalized sequence of examples such that there is a homogeneous linear

separator consistent with S of margin v . Then the perceptron algorithm applied to S finds a
linear separator after at most 1/ v 2 updates of w.

® Perceptron always finds separators if exists, but not optimal. SVM finds the one with
maximum margin.
® iR

Input: Set .4 of features, set S of examples
Objective: Compute decision tree t.

1. if S =0 then
2. create leaf t with arbitrary value
> e.g., majority value for parent node

3. else if all examples in S have the same y-value then

4. create leaf t with that y-value

5. else

6. choose feature A € A that discriminates best
between examples in §

7. create new node t with feature A

8. partition examples in 5 according to their A-value
into parts Si,..., Sm

9. recursively call algorithm on A\ {A} and the 5
and attach resulting trees t; as children to t

10. return t

k-CNF: Boolean formula in conjunctive normal form with clauses (= disjunctions of literals) of at
most k literals(k £ 5 ¥ A2 /N 5 H R T)

k-DNF: similar

conjunction: H.

disjunction: BY

CNF->DNF: straightforward

DNF->CNF:AvB=>-(- A A~ B)

® Computing a smallest decision tree for a given set of examples is NP-complete

Chapter2

Var(X) = E[(X — u)?].

For any class H, VCdim(H) <=logx(|H]|)

® [f the concept class H has VC-dimension d, then for any combination function f, the class
COMB¢«(H) has VC-dimension O(kd log(kd))

® PAC: a learning algorithm is probably approximately correct with respect to a probability

distribution D on the instance space and a target function C*, if given €,6> 0, it draws a training

sequence S from D and produces a hypothesis Hs s such that:

SEI’:D (err’D|C*(HS'€'5) < 8) >1—90

® [f not identically distributed and not independent, the following concentration inequalities
cannot be applied

® Markov’'s Inequality

Let X be a nonnegative random variable, then for all a>0,

Pr(X > a) < E(X)

® Chebyshev's Inequality

Let X be a random variable. Then for allb > 0O,
Var(X)
Pr(IX —E()| 2 b) < =~

® LetXjy,..., Xn be a pairwise independent sequence of random variables and X :=3>1_» Xi. Then,
n
Var(X) = Var(X;)
i=1

® Law of large number
Let X1,...,Xn be a pairwise independent sequence of random variables of variance Var(Xi) <=2, and
let X :=X1.n Xi. Then for all ¢ > O(7] LAH1 Chebyshev A1_F [1) 5] #EERA),

2
o
Pr(|X —E(X)| > < —
(X —E()| 2 en) <

weak law(H 2% X 51, R ZAMBEELL n, JEE mu=E(Xi)):

¢
lim Pr (‘L—u,‘ 25) =0

n—oo n

® Chernoff Bounds (Multiplicative version)
Let X1,..., Xn be a sequence of independent {0,1}-valued random variables. Let X :=> 1 _, Xi and
p:=E(X). Then for 0 <=c <=1:

pe2 uc?

Pr(X>(1+c)u)<e 3 Pr(X<(Q-ou)<e =
Corollary(W 5 —, LU, #HRR):
Pr(|X —ul > cu) < 2e”

wc?
3
® Hoeffding Bounds

Let X1,..., Xn be a sequence of independent identically distributed {0,1}-valued random variables.
Let X :=X 1. Xi and p:=E(X). Then for 0 <=d <=1:

Pr(X > p + dn) < e 20 Pr(X < p— dn) < e~
Corollary:

Pr (|X — | > dn) < Do 2nd’

® Uniform convergence

Let H be a finite hypothesis class, €,6> 0, and

m > 1 In |H|+ In z
2¢€?]
Then for all probability distributions D on X and all target functions C¥*,
b (VHe H :|errs(H) —errp c-(H)| <€) >1—6
1S|=m
(proved by Hoeffding bounds)
® Simple consistency algorithm

For a class ‘H of hypotheses, we let CoNsy be the simple learning
algorithm that, given £,4 > 0,

» draws a training sequence S of length m := [1(In|H| + In(1/8))]

» returns a hypothesi H € H consistent with S or L, if there is no
such hypothesis.

Corollary:
For every probability distribution D and every target function C* €H, the algorithm Consy is
probably approximately correct with respect to D and C*

® Almost consistency algorithm (this use uniform convergence)

For a class H of hypotheses, we let ACONSy be the learning algorithm
that, given g, 8 > 0,

» draws a training sequence S of length m:= [Z(In|H| + In(2/8))].

o
» returns a hypothesis H € H with errs(H) < &/2 or L, if there is no
such hypothesis.

Corollary:
The same, also PAC
® Simple consistency algorithm for VC Dimension

Let H be a hypothesis class such that d := VC(H) < oco. We let
VCCoNsy be the simple learning algorithm that, given €, > 0,

» draws a training sequence S of length
m:= [(dlog () +log (3))] for the constant ¢ of the theorem,

» returns a hypothesis H € H consistent with S or L, if there is no
such hypothesis.

Corollary:
The same, also PAC
® Occam's razor
Fix any description language, and consider a training sample S drawn from distribution D. With
probability at least 1-8, any rule h consistent with S that can be described in this language using
fewer than(<) b bits will have errD(h) <=g or |S| = 1/¢ [b In(2) + In(1/38)]. Equivalently, with
probability at least 1-8 , all rules that can be described in fewer than b bits will have errD(h) <= b
In(2)+In(1/3) / |S|.
® Occam’s razor application: decision tree
A tree described using O(k log, d)bits, b is number of features, log base is 2, k is number of nodes
|S| >=1/¢ [ck log, d + In(1/8)] for constant ¢
® Shatter: Given a set S of examples and a concept class H, we say that S is shattered by H if for
every A C Sthere exists some h & H that labels all examples in A as positive and all examples
in S\ A as negative

® VC-dimension VC(H) of H is the size of the largest set shattered by H, or oo if arbitrarily large

sets are shattered by H(& FI2F1EM:, AN & 45 #D)
® Common VC dimensions:

X=R?, H the calss of all axis-parallel rectangles. VC=4

X=R!, H the class of all halfspaces in X. VC=I+1

3. X=R, H the class of all finite subsets of X. VC=co

4. X=X *foralphabet ¥ of size>=2, H:={lw|wE ¥ *}, Wi A4, VC=2
(prove by >=, then <=)

® Union of VCs
VCdim(H U H'") < VCdim(H) + VCdim(H') 4+ 1

® Sample size bound

Let H be a finite hypothesis class. Let £,6> 0 and

o2 (1)

Then for all probability distributions D on X and all target functions C¥*,

SPrD (VH €H: (ers(H)=0 = errp,c-(H) < E)) >1-90
|S|l=m

® VC-dimension sample size bound

There is a constant ¢ such that following holds. Let H be a hypothesis class of VC dimension d < 0.

o2 (1) ()

Then for all probability distributions D on X and all target functions C*,

SPrD (VH EH : (errs(H)=0 = errpc:(H) < E) >1-90
|S|l=m

Let £,6> 0 and

® Growth function sample size bound

Let H be a hypothesis class. Then for all 0<g,d6<=1 and all

m> g (Iog(%@m)) +log (?))

Then for all probability distributions D on X and all target functions C*,
SPrD (VH eH: (errs(H) =0 = errpc-(H) < 5) >1-9
|S|l=m

® Growth function of H is the function g4 : N -> N defined by
gu(n) == max {|H[Y]| | Y € X with |Y| = n}

® gy(n)=2" & n<=VC(H)
® Sauer-Shelah Lemma
Letd:=VC(H). Thenforalln € N,
9 /n en\d
gu(n) < ; (/) = (F)
(This function can be used when n<=d)
® The concept class Cis PAC-learnable with respect to the hypothesis class H if there is a learning
algorithm that,
given g,0, draws a sequence S of at most m(g,0) training examples;
outputs a hypothesisH € H;
3. is probably approximately correct with respect to every distribution D on X and every target
function C*€C.
If H = C, we just say that Cis PAC-learnable.

® A concept class Cis PAC-learnable if and only if VC(C) <o

Chapter3

WEBARF AT DS XX <=f => Xi <= f (g2 MA N T 56 T3 4K)
1+x<=e* ¥ N F In FiARAHIX
IR EE Fﬁﬁﬁ-‘%ﬁ%%‘ﬁ% multiplicative weights update %,

[
[
[
® Weighted majority algorithm
For some constant 0 < o < 1/2.

> W,—tl) =1 for all / € [n].

Intuition: Initially, we give the same weight to each expert's advice.
1 if E:;eh]vv >>z:fdﬂ W
» Fort > 1, d\t) .= aff=1 a=0
0 otherwise.
Intuition: Buy, if the weighted majority of the experts recommends
It.
(t) (t) _ (1)
w; if a; .
» Fort>1andie[n), w' =™ (t) I —P
(1 —a)w;”’ otherwise
Intuition: Decrease weights of experts with wrong prediction by a
factor (1 — «).
® Analysis of above algorithm
For every t > 1 and every | € [n],

2Inn

e < +2(1 +)t

Intuition: The inequality holds, in particular, for i being the best expert.
Thus in the long run, our algorithm guarantees our losses to be at most
a bit more than twice the losses of the best expert.

® Multiplicative weight update algorithm
For some constant 0 < a < 1.

» w =1foralliel.

» Fort>1and e/,
W"(r+1) —(1— a)Lf)m W/(t)

FEEIG LR FFENLIEEL expert

) W.(f)
Pr({it) =p" = ——5
D) ! S W',-(,t)
(XL 2RI &, A Lij /210,11, AT BAZEF)H)
® Analysis for above
For everyt > 1 and every i € I,

t

d L)< '”—” +(1+a) Y Ly

s=1 s<t
A L& i the randomized strategy of the multiplicative weight update algorithm beats the
deterministic strategy of the weighted majority algorithm by almost a factor 2
® \Weak learning

Let 0 <~ < 1/2. A learning algorithm is weak learning algorithm
with error parameter -y (short: «y-weak learner) for C if, given

0 > 0, the algorithm draws a sequence S of m = m(d) examples
and computes a hypothesis H such that for all probability
distributions D on X and all C* € C,

SFN’rD (errplc* (H) < fy) >1-4.

® Strong learning (PAC-learning)

A learning algorithm is a PAC-learning algorithm or strong learning
algorithm (short: strong learner) for C if, given £,6 > 0, the
algorithm draws a sequence S of m = m(e,) examples and
computes a hypothesis H such that for all probability distributions
DonXandall Cre(,

i (eer,C* (H) < 5) >1-6.

® AdaBoost (means adaptive updates of the distribution, put less weight on those correct)
1. Idea

a) Repeatedly run the weak learner on subsets of the initial training set.

b) These subsets are randomly drawn from different probability distributions.

c) The distributions are adapted in each round using multiplicative weight updates.
2. Weak learner W

a) We only run W with examples drawn according to probability distributions D on X

b) Call a hypothesis good if it has true error less than y. W generates a good hypothesis with

probability at least 1-8

c¢) Aswe know D and the correct labels for samples from X, we can check if a hypothesis is

good.
d) We run W on D until it returns a good hypothesis, if bad, re-run

3. MWU algorithm
[1 ifj(X;) =G
7710 otherwise.

Entries for loss matrix are posistive

Update parameter o=1/2 -y (J£ &, XL weak learner W) EEH IR Z 74 THER, W jik

7, FHIPAGEN)
4. Boosting algorithm
» We consider a run of the MWU algorithm where ;) is a hypothesis
obtained by running W on D) until it returns a good hypothesis.
» We run the algorithm for t = é In% rounds.
» The final hypothesis H that we return is defined by

1 if {s<t]jO)(x) =1} > t/2,
HO) ::{ fl{s < 1900 =1} > 1/
0 otherwise.

Thus errs(H)< €
This is for S, so setting € can force H to be correct on all examples
H may from a class H* which is still simple

AUE N, g2 DM w REERZE, DLAAEEE RN B RER G KR

If we want H to classify all examples correctly, we need to take €¢=1/n, and thus run the MWU
algorithm for O(log n) rounds

This majority function has VC dimension bound by O(log n * VC(H)), so with large n, we can show
hypothesis from H* has small error

® Bandit learning

Observe only payoff of machine we pick, not the others; setting is adversarial, the adversary knows
our strategy

Maximal single—action reward:

(t)
Umax -— maxz Qa
ae[n]
Reward:
t
_ (s)
= Z Date)
s=1
Weak regret:

r(a) := g\l — g(a)

Algorithm Exp3

Parameter: vy, where 0 <y < 1.
Initialisation: wit) :=1 forall ae [n]

1. fors=1,2,..., t do

2. D* probability distribution defined by

wl)

'Y
Pr({a}) == pf == (1 - ;
pe) Za’ -1 W { T
3. action a®) drawn randomly from D)
4. reward q(5) « qif,)]
5. weights are updated as follows:
L+ w') . exp (:) if a=als),
w&“} otherwise

Exp3 stands for exponential-weight algorithm for exploration and exploitation

Parameter y determines the tradeoff between exploration and expectation: the closer y gets to 1,
the more weight we put on exploration

Expect regret for Exp3:

1
r(Exp3) < (e—l)-’r'Qr(ntgx —-n-Inn
Y

Strong regret: for best possible sequence of actions

Chapter4

® the random projection theorem the probability of the length of the projection of a single
vector differing significantly from its expected value is exponentially small in k

SVD Wl ffiE —MNMRKHRE v, e MK v, BRI T AL ER, 2

Il) AR ALE K i o

® Universal: A family H of hash functions from U to T is universal if for all distinct x, X € U,

, 1
Pr (069 = () <

® k-universal: if for all distinct x1,..xk €U,
1

Rr () = hie) = . = h(x) < s

® Strongly k-universal if for all distinct x1,...,.xk €U and all y1,..yk €T,

hFe)% (h(xa) =y A Ah(x) = w) = [T

® = 4EFK concentration near equator

Let£>3 and c>1. Then

c 2
vol ({x e Bt ‘ |x1| > 7}) < T2
-1 c

® Spherical Gaussian distribution(#%[7] variance # /& theta”2)

()7 1 _HX_H'HQ
P = (2m)t/ 20t =P 202

® Gaussian Annulus Theorem

Let b < /2, and let x € R be drawn from an £-dimensional spherical
Gaussian distribution with mean 1 = 0 and variance o> = 1. Then

Pr(vVl—b<|x| < VE+b) >1—3e %

for a constant ¢ > 0 not depending on £ and b.

® Reduction mapping

In the following, we let k, £ € R, where k < £.
We draw vectors uy, ..., u, € R¢ independently from the ¢-dimensional
spherical Gaussian distribution with mean 0 and variance ¢ in each

direction and let

uj
1
U:=—1]: | e RF*
vk

Uk

® Random projection theorem(jift /& I [F#4E mapping A5, FlJEK$ZEIT)

For all x € Rt and all € > 0,
e (11Uxt — Ixl| > elfl) < 3%,

where the probability is over the choice of the vectors uq,. .., uy used
to construct the matrix U and c¢ is the constant from the Gaussian
Annulus Theorem.

® Johnson-Lindenstrauss Lemma ({RFFAHRTFE 25D

Let 0 < & <1 andk, € n€N such that k > 2 Inn, where c is the
constant from the Gaussian Annulus Theorem.
Then for every set X C RY of size |X| = n,

3
Pr (T y € X s (1-e)lx—yll < [[Ux— Uyl < (1 +e)llx—yl) 2 1- =

® Principle component analysis, we extract features that are combinations of original features
and try to minimize the squared Euclidean distance between original data and their
projections

® svD, BE4a—N—" K

The first singular value of A is
c1(A) ;= max {||Av|| | v € R® width ||v| = 1}.
A first right-singular vector of A is a vector v € R with |lv|| = 1 and
|Av]| = o1(A).
RN, AT HAG A Z AT)
® Singular value ML
® SvD, HRinEER
Let A € R™*¢ with singular values oy > 0> > ... > o,, corresponding
right-singular vectors vy, ..., v, and left-singular vectors uy, ..., u,.

Then
.
_ T
A= E ojujV;
=1

® Relations between singular values and eigenvalues
If A'is symmetric, then its singular values are the absolute values of the nonzero eigenvalues.
® Best-fit subspaces(4H) T 0 ELE, BT LART k #2 B AT k 4N)

Vi is a best-fit k-dimensional subspace for A, that is, a k-dimensional
subspace V C R¢ that minimises the sum of the squared distances of
the vectors a; to V.

® Rank-k approximation of a matrix

A € R™ with singular values o1 > 02 > ... > o, corresponding
right-singular vectors vy, .. ., v, and left-singular vectors uq, ..., u,.

For1< k <r, let

K
— T
Ak = E ajuN; .
=1

® Frobenius norm

1AlF =

® NI norm HITE)H

Let A € R™* with singular values o > ... > o, > 0. Then

IAllF =

® 2-norm(Hi/E 5 — singular value)

|All> = sup [|Av].

VER?
llv]|=1

Chapter5

® Variance= E[x?]-(E[x])?
%Z (fu o E(ﬁ.l))z
= uel

® Simple sampling algorithm

Algorithm SIMPLESAMPLE
Input: Stream ay, ..., an > Assume n > 1
1. 7+0
2. while not end of stream do
3. I+ 1+1
4 sample « a; with probability 1//
> otherwise sample keeps its current value

o

return sample

® Reservoir sampling

Algorithm RESERVOIRSAMPLE

Input: Stream ay, ..., an, k<n
1. fori=1,..., k do
2. sample[i] « ai

> variable / has value k now
3. while not end of stream do

- [<—i+1
true with probability £,
5. replace < _ !
false otherwise
6 if replace then
7 choose j uniformly at random from [k]
8. sample[j] «+ a;
9. return sample

® Universal hashing

A family A of hash functions from U to T is universal if for all distinct
x,x' e,)
Pr (h(x) = h(x")) < —.
Pr () = h() <
® HJi% universal hashing

Let M < N, and let p > N be a prime. Suppose that
U={0,...,N—=1}and T={0,..., M —1}. For a, b € N, define
ha,bZ[U*)T by

ha.b(x) == ((ax + b) mod p) mod M

Then the family H := {hap

® Collision

a,be{0,...,p—1} a+# 0} is universal

Let H be a universal family of hash functions from U to {0, ..., 2K — 1}
Then for every 6 > 0 and every set S C U of cardinality |S| < n,

e (coll(h, 5)) = ")

and Prpey (coll(h, S)> 52"%) <.

® k-universal

Let k > 2, and let H be a family of hash functions from U to T.
(1) H is k-universal if for all distinct xq, ..., xx € U,

1
|T|<—1

Pr (h0a) = hia) = - = h(x)) <

(2) H is strongly k-universal if or all distinct xq, ..., X, € U and all

1
T

® Strong k-universal => k-universal; 2-universal <> universal
® Another characteristic

Let 2 < k < |U|, and let H be a family of hash functions from U to T.
Then H is strongly k-universal if and only if it has the following two
properties.

k-Independence: For all distinct xi, ..., xxk € Uandally,,... yx €T,

=1

K K
P (/\ h(x;) = }’r') -1 Pr (h(xi) = yi).

i=

That is, the indicator random variables for the events
h(xi) = yi are independent.

Uniformity: ForallxeUandy €T,

1
hzgﬂl {h(X) B }’) - m

® it strongly k-universal(Fl| Ltk B £ K)

» We choose a prime power g > N and let F,; denote the field with g
elements (unique up to isomorphism).

v

We fix an arbitrary embedding g; : U — F, and an arbitrary
bijection g2 : Fg =+ {0,...,g—1}.

» Fora=(ao, ... ak—1) € FX, let p, : Fq — Fq be the polynomial
function

2 k—1
Pa(x) = a0 + a1x + axx” + ..+ a-1x

and let £, : U —{0,...,g— 1} be the function gz © pa © g1.
g Rt H /MR 2

It remains to construct a strongly k-universal family mapping U to
T:={0,..., M —1} foran M < N.

» We choose a prime power ¢ > N and define the mappings
fL:U—=A{0,. .., g—1}forae]Fg as on the previous slide.

» We define functions h, : U — {0,1...,M —1} by

ha(x) := fa(x) mod M.
» We let HE = {h. |a € Fi}.

B9 M devides q, 7 #& strongly k-universal(75 U &AL T)
® Zcount

CHT SR BRI uniformly JEEU), AL, FrA4H 7 HARKIT L, 4% hash)

Algorithm ZCOUNT

1. z+0

2. while not end of stream do
3. a + next stream element
4. if zeros(a) > z then

5 z — zeros(a)

0

. return 2z+1/2 > z maximum number of zeros of stream elements

® Flajolet-Martin Algorithm
Let H be a strongly 2-universal family of hash functions from U to [M], where M is the first power
of 2 greater than or equal to N.

Algorithm FMCouNT

1. h drawn uniformly at random from H
2. z+0

3. while not end of stream do

4, a < next stream element

5 if zeros(h(a)) > z then

6 z < zeros(h(a))

’

. return 22t1/2
® MCount
B run FMCount 2k-1 >, 3R [Al 47 #
® pth frequency moment

Fp(a) := Z (fU(a))p

uel
® AMS-Estimator

Algorithm AMS-ESTIMATOR

1.7=0

2. while not end of stream do
3. [+ 1

4 with probability 1// do
5. a<+ a;

6. r< Q0

7 if ai = a then

8 r<—r—+1

9. return i(rk — (r — 1)¥)

(E(return) = Fk, XA LR p A2 1/2, B PA % boost)
® Tug-of-War
Algorithm TuG-or-WAR
1. draw h uniformly at random from H
2. x+ 0
3. while not end of stream do
4 a < next element from stream
5 X +— x + h(a)

6. return x2

(B4, AR strongly 4-universal, HBREF2I{-1,1}, HEMXT F2)
(E(B)=F, and Var(B)<=2F,?)
® Averaging the Tug-of-War estimator

Algorithm Ava-ToW (k)

1. draw hy, ..., hg independently from H
2 fori=1,..., kdo

3 xj 0
4. while not end of stream do
5 a <+ next element from stream
6 fori=1,..., kdo
Vi Xj < Xj + h;(a)

8. return 137K X2
Simple sketch

Algorithm SIMPLE SKETCH (k)
draw h from H.
forir=1,..., kdo
S[]:=0
while not end of stream do
(a, c) < next update
S[h(a)] < S[h(a)] + ¢
7. return S

Count min sketch

o0 AE W

Algorithm CouNT MIN SKETCH (K, ell)
. draw hy, ..., hg independently from H.
ford= 1, . k do

. while not end of stream do
(a, ¢) - next update

~NOoOO AN =
. iy &
| =

=

o

S[hj(a).J] < Sihi(a).j]+ ¢

return S

d; = min S[y(u).]
Jele] i Ja A2 de/ME 4 1E d*

® CM heavy hitter

0" @0 3

Algorithm CM Heavy HITTERS(k, £, T)
» compute a CM sketch S with parameters k, £
» maintain ||d||; during the computation

» during the computation, maintain a set H of elements u € U whose
estimated value d} := min; S[h;(u),] is at least 7||d||;

» after each update (or whenever H gets too large), remove those
elements u whose value d} has dropped below 7||d||; from H

» return all v € H with d > 7||d|;

EER, LEH PR, RS ATIANEINE H

Chapter6

® Map worker failure: completed 1! reset to idle; Reduce worker: completed are not reset
Matrix multiplication

1.
First Map-Reduce Round
Map function: On input (A, (i,/, v), emit (4, (A, i, v)).
On input (B, (J, k. w)), emit (J, (B, k, w)).
REDUCE function: On input (j, values), emit ((/, k), vw) for all
(A, i,v), (B, k, w) € values.
Second Map-Reduce Round
Map function: The identity function: on input ((/, k), x), emit
(7. k). %).
Repuce function: On input ((7, k), values), compute the sum x* of all
x € values and emit (C, (i, k, x*)).
2.

Map function: On input (A, (/,/,v)), emit all key-value pairs
(1. k), (A,J,v)) for k € [n].

On input (B, (J, k, w)), emit all key-value pairs
((1, k), (B,j,w)) for i € [4].

REDUCE function: On input ((/, k), values), compute the sum x of all
ww for (A, J,v), (B,), w) € values and emit (C, (i, k, x))

® Communication cost: sum of input size to all tasks
1. 2plm+2gmn+ 2pglmn
2. plm+gmn+(p+q)mn:
® Replication rate: Number of key-value pairs produced by all map tasks divided by the
input size
® maximum load: Maximum input length for single reducer or reduce task
1. pl+gn; pgm
2. pm+gm
® L, {HZJ/> communication hitA

Choose parameter s = number of stripes.

Let h: [n] — [s] be the mapping that assigns each row/column index to
its stripe. For example, h(i) = [is/n].

Map function: On input (A, (7,/, v)), emit all key-value pairs
((h(7), u), (A i,j,v)) for u € [s].
On input (B, (J, k, w)), emit all key-value pairs
((t, h())), (B4, k, w)) for t € [s].

Repuce function: On input ((t, u), values), for all i € h~*(t) and all
k € h(u), compute the sum

C = E vw
(A1), (B.J.k.w)eEvalues

and emit (C, (1, k, cik)).

Multiway joins-Hypercube algorithm

Map function: On input (R}, (a1, ..., ax.), emit all pairs

such that
» pj €[] for all j € [k],
» pj = hi(a;) for all j € [k],/j' € [ki] such that
Aip = A

if -

REDUCE function: On input (P, values), compute

m

Q(T)) = Rfl(nﬁ) . ’Rm(ﬁ).

where
Ri(P) == {t | (Ri. t) € values},

and emit all pairs (@, t) for t € Q(P).

Replication rate:

2 0nm 11 s

=1

JE[KI\Idx(i)

m
DN
i—=1

Chapter?7

Different “connect”

Connected is usually associated with undirected graphs (two way edges): there is a path between

every two nodes.

Strongly connected is usually associated with directed graphs (one way edges): there is a route

between every two nodes.

Complete graphs are undirected graphs where there is an edge between every pair of nodes

Strongly connected => average probability is stationary

en1={0,0,..,0,1} (n 1~ 0)

markov chain is connected if Graph is strongly connected

pr=poQ

Aperiodic if the greatest common divisor of the length of all cycles in GQ is 1. A Markov
chain is ergodic if it is connected and aperiodic.

Connected a->m, ergodic p->7

{TE#)i% ergodic

Let Q € R" be the transition matrix of a connected Markov chain.
Then for every o with 0 < o < 1,

a®+ (1 —a)l,

where | is the (n X n) identity matrix, is the transition matrix of an
ergodic Markov chain with the same stationary distribution.

® MCMC-Metropolis-Hastings Algorithm

L if uv € E(G) and p(v) = p(u)
L. ggzg if uv € E(G) and p(v) < p(u)
qUV - .
1-— Zv’eN(u) Que IfU=v
0 otherwise
1 be 1 with probability deg(v)/d,
0 otherwise
2. if b=1 then
3. choose a neighbour v/ € N(u) in G uniformly at random
4. if p(v") = p(u) then
5. vV
6. else
. v with probability p(v')/p(u)
‘ u with probability 1 — p(v')/p(u)
8. else
9. Ve u
10. return v
® Page rank
ar if (1:_/) S E(G\Neb)
gj =4 &

0 otherwise.

Initialize n webpages with w=(w1,w2...wn)

w <-wQ

wij=2 wi/di+ (i,j) € E(Gweb)

® XML T, BREMBAERETA ergodic (T —A> state, N Fik—)

. Ja=naeg+=L ifdt() >0,
LA ¥ if d*(i) = 0.

n

Exercises

® Exercise3
Fibonacci:

1+wf \E
T ()"

V5

® Exercise5

100 ZEBR N A= B

FEAN S, gaussian100 Y, AR B BR LK FE V (x172,%72...x10072), BUEAETHT 1 T
K E, uniformly distribute from 0~1, JF 100 (X J7#R. W&, @15 T .

XA BRI :

We can draw a unit vector x € R¢ uniformly at random by drawing
y € R¢ from an ¢-dimensional spherical Gaussian with mean 0 and
variance 1 and letting

_ y
X = 7.
Iyl

® VCof trianglesin 2-dis 7.
o HMMRHHATIEMA =ML, ETNMREM. Ve N4
® (l-x)M<=e™
[]
Questions
1. Chapter2, P27, yellow remark
2. Chapter2, log and In (find out their base)

Ln BOZAE HARME, log RFTRESE 2
3. Chapter2, P29, yellow remark
4. Chapter3, P11, Taylor expansion, In(1 - x) >= -x - x? (0<=x<=1/2)
5. Chapter3, P23, yellow remark
6. Chapter7, markov chain and markov chain monte carlo difference?
7. Tugofwar B AHLT A R, S5 b, XU 2B S .
8. HZTHIEEE tug of war ELENZLULN) median of means /&4 SEHLHY

%iﬁ%% #i@’ blcld
Exercise sheet 3, ex3, AR #L
Exercise sheet 7, ex1, ¢, MiZeWidifE, ANEEE. EEESR. B BENEREE

£,0
afydedynipkAipvondpotomoEyl
BwepTyL1I0TAGOIPYNOEKALEX TRV

https://www.google.com.hk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjSsaqw3ZnSAhXDuBQKHSu_BKgQjRwIBw&url=http://jwilson.coe.uga.edu/EMAT6680Su07/Francisco/Assignment12/fibonacci.html&psig=AFQjCNFCKVahA_z4qJH0d0uOeLJQ0Oh98A&ust=1487510144675624

