Data Mining Algorithms — summary
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Information

Data + Semantics

Characters + Syntax

O,

Data and Information

+ Learning

+ Practice

+ Motivation

+ Reflection

Explicit Knowledge Tacit Knowledge

+ Uniqueness



* The KDD-Process (Knowledge Discovery in Databases)
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Data Mining:

* Clustering

* Classification

* Frequent Pattern Mining
databases/ * Indexing Structures

information repositories * Simila rity Search

B F %~ transformation {45 3 2%

Normalization: e.g. 0 mean 1 variance

Discretization: [0,100] -> low, medium, high

Derive rows; attributes: total amount per month; diff = current — previous

Prediction vs classification: numerical output (by regression)/ classes

Data mining functionalities: characterization, discrimination(Hij & 2 9% B 52 2 25 it
AL FE K HE), association, classification, clustering, outlier and trend analysis, etc.

Data warehousing 1

Values A H2K:
Categorical:
Nominal: No natural order among values
Ordinal: Some ordering exists
Numerical:
Discrete: Possible values can be enumerated
Continuous: Infinitely many possible values
Dimensionality of data:
One-dimensional

2. Multi-dimensional
3. High-dimensional
4. No-dimensional: always talk about metric data

Metric data is parallel to this categories.
Metric data has a metric distance: e.g. images, graphs, itemset ..
1. Symmetry:d (p,q) =d (q, p)
2. Definiteness:d (p,q) =0 p=q
3. Triangle inequality: d (p,7) < d(p,q) +d(q, 1)



Classes of measures:

1.
2.
3.

Distributive: same applied, e.g. count, min, sum, max
Algebraic: can be computed, e.g. average
Holistic: no bound on data needed, e.g. median, mode: value most often, rank: k-

smallest

Measures for central tendency

1.
2.
3.

4,

Mean

Midrange: (max - min)/2

Median: apply also to ordinal; if even, median is usually defined to be the mean
of the two middle values

Mode: apply also to no ordering; most frequent data

Measures for dispersion of data

o v ks WwWwN R

Quartiles: Q1, Q2 ...

Inter-quartile range: Q3 - Q1

Five number summary: min, Q1, median, Q3, max

Boxplot: (plot outlier individually)

Outlier: values that 1.5 * inter-quartile range below Q1 or above Q3

Variance (scalable computation) and deviation:

hT

N
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deviation measures spread about the mean and should be considered only when

the mean is chosen as the measure of center.

Visualization:

1.

2.
3.
4

Geometric: parallel coordinates, scatterplot
Icon-based: Chernoff faces

Pixel-oriented: recursive patterns

Other: hierarchical, graph-based, hybrid

Common ones:

a.
b.

C.

Box-plot: Minimum, Q1 (U755 —1>) , Median, Q3, Maximum
Histogram
Quantile plot: sort the data in ascending, #AJ5 I, #HIY5], #IE 1/N, N
BRI
. 1—=0.5

fi= N
Quantile-quantile plot: PN SCEBUNR AR —#F, BHZmEE, WERA—F, £
R4z D B ISANMEES — T, BN g plot W ELIE#R—4E, BT RAAT DLAE I
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Scatter plot -> scatter plot matrix -> parallel coordinates(i% /2 i 1 f& 71~ 5 4 [ g
77, 1H&Z parallel XANASEEIR LB 7R K EEE 1), matrix and parallel
dimension reordering & il quality metrics K 1F4Y, 7 LA reduce clutter.
Parallel coordinates: min-max range in each axis, /|7 order A LA focus on
clusters or correlation

Loess curve (local regression; on scatter plot): two parameters: a smoothing
parameter (0-1, percentage of near points to be used), and the degree of the
polynomials that are fitted by the regression

Pixel-oriented visualization: we can use any 2-D space-filling curve, ¥ & =
pattern H CLHEAT; each data for a pixel; have sub windows for each dimension;
Inside a window, the data values are arranged in some global order shared by all
windows.

Chernoff faces

e Data warehouse is a decision support database, maintained separately, support

information processing, primary source for data mining

e Warehouse characteristics:

1.

Subject-oriented: around major subjects, simple and concise, focus on decision
makers

Integrated: integrating databases, flat files, online records; clean and integration
before moving in

Time-variant: historical data, has element of time

Nonvolatile: initial and access, no update, physically separate storage

e Data warehouse vs operational DBMS

oLtp
(online transaction processing)

OLAP
(online analytical processing)

Major task of...

... traditional relational DBMS

... data warehouse systems

Function

Day to day operations

Decision support

Database Design

ER + application-oriented

Star schema + subject oriented

Data

Current, up-to-date, detailed, isolated

Histaorical, consolidated, integrated

Users

Clerk, IT professionals

Knowledge worker

System orientation

Customer

Market

Access patterns

Read/write/update operations,
index/hash on primary key

+ Read-only but complex queries
* ETL/R: Extract, Transform,

Load/Refresh
Units of work Short, simple transactions Complex queries
# records accessed | Tens Millions @]
# users Thousands Hundreds
DB size 100 MB - GB - TB 100 GB-TB - PB
Metric Transaction throughput Query throughput, response

Modeling schemes for data warehouse

1. Star schema



2. Snowflake schema

3. Fact constellation (£ i)
Star schema:
A fact table (dimensions i.e. keys, and measures i.e. dependent attributes) in the middle
connected to a set of dimension tables; each dimension is represented by only one table,
and each table contains a set of attributes
Snowflake schema: some dimensional hierarchy normalized into a set of smaller
dimension tables

Fact constellations: multiple fact tables

Ume shipping fact table
time_key I time_key
day olec Fam h - =
day_of_the_week - sales fact table teny .| item_key
month [ $eeen ] time_key .7 item_key g —
quarter item ke e item_name shipper_key
year _key brand | from_location
| branch_key type -
- - supplier_type " 4 to_location
» | location_key | dollars cost
units_sold ., [ location | i ;.
branch s . units_shiped
p—— o dollars_sold location_key e ;
ranch_key  |g street i :
branch_name city g._ shipper v
branch_type country e shipper_key
region | T shipper_name
"l location_key
shipper_type

Data warehouse vs data mart: data warehouse is enterprise-wise, has larger span, often
use fact constellation schema; data mart is a department subset of the data warehouse,
often uses star or snowflake schema.

OLAP operations:

1. Roll-up: either by climbing up a hierarchy (city to country) or by dimension reduction
(remove time AN ), BTN —N )

Drill-down: stepping down a hierarchy or add dimension

Slice: a selection on one dimension

Dice: a selection on two or more dimensions

v s N

Pivot (rotate):

Quarter 1 Quarter 2 Quarter 3
v PC VCR TV PC VCR TV PC VCR

Pivot (rotate)

™v PC VCR
Q1 Q2 Qa3 Q1 Q2 Qa3 Qi Q2 Q3

Rotate the axes in a 3-D cube, or transforming a 3-D cube into a series of 2-D
planes.

6. Drill-across: executes queries involving more than one fact table

7. Drill-through: uses relational SQL facilities to drill through the bottom level of a data

cube down to its back-end relational tables



e A starnet query model consists of radial lines (a concept hierarchy for a dimension), each
abstraction level in a hierarchy is called a footprint (showed as small dots)

Data warehousing 2

e Data reduction:
1. Numerosity reduction
2. Dimensionality reduction
3. Discretization (i.e. quantization) and concept hierarchy
4. generalizaition
e Numerosity reduction:
1. Parametric methods: estimate model parameters, store them, discard data
2. Non-parametric methods: sampling, histograms, cluster (the cluster
representations of the data are used to replace the actual data.)
e Dimensionality reduction, i.e. feature selection
e Heuristic feature selection methods:
1. Bestsingle feature under feature independence assumption: significance test
2. Step-wise best feature selection: pick the best conditioned to chosen features
3. Step-wise feature elimination: repeatedly eliminate worst
4. Best combined feature selection and elimination
5. Optimal branch and bound: feature elimination and backtracking
e Transform feature space basis:
1. Data dependent: PCA
2. Data independent: random projections
e PCA:
Computation of centered data matrix: adapt value range and subtract mean

. Compute covariance matrix
3. Eigen decomposition (¥, R EING—T, W2 cov)

eigenvalues

diagonalization 0 0
1ar & _ ‘v pn.vT _ -
AT A=CovAy)D-vD) D=(T -~ 0)
| 0 0 vd

eigenvector matrix
Vvt =vT.v =1Id)

4. Transformation of data (normalized F{%#iE 45 e F4 HIA])
Cov=V-D-VI > A.-V

5. Truncation (#%) of transformed data (it /& M BT JG 1 B LA A k)
e  PCA properties:
1. High complexity O(nd? + d3) (covariance matrix + diagonalization) for n points
and d dimensions
Optimal reconstruction w.r.t. mean-square error
Lost ‘semantics’, i.e. hard to interpret about original dimensions



Random projection:

Randomly choose k vectors in d dimensions (k is old, d is new size)
No need orthogonal

But normalized in O(dk)

Application complexity O(ndk) for n data

Achlioptas’s simple approach:

RR € Rk«

R[ij] = {+1 with probability 1/2

’ —1 withprobability 1/2

+1 with probability 1/6
R'[i,j1 =v3-{ 0 withprobability 2/3
—1 with probability 1/6

Application on each data, each row in R or R” has length to 1
g(x) ==-x-R

gx)==-x R

Concept hierarchies: from low level concepts to higher level
Discretization (quantization): divide range into intervals
1. Binning
2. Clustering (can be hierarchical clustering)
3. Entropy-based discretization
Binning: divide data into bins and store a representative (average, median...) for each bin
1. Equi-width: easy; but outliers dominate (X4 bin MR S 7€)
2. Equi-height: good data scaling, more robust to outliers; but bad when a single
value’s frequency is high (intervals complete and disjoint)
3. V-optimal: minimize variance within bin;7E & bound A& B SEHHE BUFE, 1
VLR, WHLE complete, HAREARRI S EHISEE min, max [T K%L

N ub,
Z Z(f(/) —avg, )2 where:

=L =ik, N =number of buckets

[b;, ub; = lower and upper bounds of i-th bucket

f(j) = number of occurrence of the value j

avg; = average of frequencies occurring in i-th bucket

ctnaram:

Entropy-based discretization: partition into two (at a time), minimize the entropy
m @

E(S, T)_|5||E nt(S, )+|IS |Enf(5 )y Eni(S)= Zpllog )

: S| -

b b, FREWAARE. WU ER I, MIZSIE class
http://kevinmeurer.com/a-simple-guide-to-entropy-based-discretization/

m e 2R class ML, p BT bin NEBH: class FIAEZE, log2 A& KA bit
Generalization:

Data cube (OLAP) approach; manual

Attribute-oriented induction approach; automated

OLAP approach



Pros: can be performed on data cube by roll-up and drill-down
Cons: handle simple nonnumeric or simple aggregated numeric values; cannot tell what
level should reach

Example:

Name Gender |Major |Birth-Place Birth_date | Residence Phone# |GPA
Jim Woodman | M cs  [YancouverBC Jgpgy | SULMainSL, |67 4508|367
Scott Lachance | M s Montreal, Que, | 37,80 343 LstAve. 12539106 |3.70
Laura Lee F Physics | peat® WA 125875 ﬁéﬁgatrir':ahy 4205232 |3.83
Removed Retained :Ulf ne. Country Age range City Removed \FE‘

Then we can sum and count
e  Attribute-oriented induction (AOI)
By attribute removal or attribute generalization
Put threshold on distinct values of an attribute or control the size of final relation
e Datacleaning
1. Fillin missing values
2. Identify outliers and smooth out noisy data
3. Correct inconsistent data
e Missing data
1. Ignore the tuple
Fill in manually
Use a default constant
Use mean

v s W

Use mean of same class
6. Use most probable value (e.g. by decision tree)
e Noisy data and inconsistent data
Binning (then smooth)
Clustering
Combined computer(detect) and human(correct)
Regression

e Data cleaning is not always necessary, some data mining can deal with uncertain data

Frequent pattern mining

e Frequent itemset notation:
Items | = {i1, i2, i3, ...}: set of all possible items
k-itemset itemset of length k
support number of transactions in database has this itemset
frequent itemset support(X) > minSup
e Apriori principle:
1. Any non-empty subset of a frequent itemset is frequent, too!
2. Any superset of a non-frequent itemset is non-frequent, too!

e Apriori algorithm:



" Variables
— C: candidate itemsets of size k
— L, frequent itemsets of size k

L, = {frequent items} @
for (k=1; L, |= &; k++) do begin
join L, with itself to produce C,,,
discard (k+1)-itemsets from C,,, that contain non-frequent
k-itemsets as subsets
C,.: = candidates generated from L,

for each transaction t in database do
Increment the count of all candidates in C,;
that are contained in t
L., = candidates in Cy,; with minSup
return i, [,
Can also be viewed as:
1. Join: p and q are joined if they share the same first k-1 items (sort in some order, only
if firsts are the same)
2. Prune: delete k-subset that is not frequent
3. Scan: count support
e Hash-tree
1. Leaf nodes of hash-tree contain lists of itemset and their support (i.e., counts)
2. Interior nodes contain hash tables
Construction: search and insert, if overflow, transform leaf node to internal node
Counting: i I RIS PR RER, (1,3,7,9,12)FK 3-itemset, H4 root HE
BT =4, 2 ate RERA S B ALE
e FP-tree
Construction:
1. Scan DB, find frequent 1-itemsets
2. Retain only frequent ones in transaction and order transaction in descending
order

3. Scan DB again, construct FP-tree

Mine FP-tree:
1. Construct conditional pattern base for each node in the FP-tree
2. Construct conditional FP-tree for each conditional pattern base (4> 2= i AN 1%
frequent [¥), #ltsE 15 KIHiE tree, A0Sk E condition)
3. Recursively mine, if single path or empty, enumerate all



conditional pattern base:

item | cond. pattern base
|

c |f3 0

a | fc3

b fea:1, f:1, c:1 =)

m | feca:2, fcab:1

p | feam:2, cb:1

H R E A C node AL
Single path enumerate (& &7 condition, I {TiE):
example:
m-conditional FP-tree All frequent patterns
{}Im concerning m
| (=)
. . m,
;7 3  justasingle path fm, cm, am,
3 fem, fam, cam,
| fcam

a:3

YT, AW tree base Ak, FNREIK tree #2 A base 111, FrLATEIfL

condiﬁonh.’ pattern base 1:
/ \ item | cond. pattern base
f 4 b ] R

bfz

ﬁ fb:2, b1
/ \ 1 conditional pattern base 2:

item | cond. pattern base
1'2 b | f2
21 .
Z b 1 Foln

=
() _

f':’b-!"ﬂﬁ)}}

) {{bel. {fbc}}

Pros:

1. No candidate generation

2. Compact data structure

3. Eliminate DB scan
Closed frequent itemset: no proper super-itemset with the same support (complete
information)
Maximal frequent itemset: no proper super-itemset with support = minSup (not complete
information)
Association rule: An association rule is an implication of the form X = Y where X, Y € |
are two itemsets with X N Y = 0.
AR support EEIEAKS, BRUL|DIABEE NS, WA T 1, X IFY B,
/DI
support(X =Y)=P(X UY) = (T DX vy c T

= support(X UY)
D]




3 HT e DIXUY ST} support(XUY)
confidence(X = Y) = P(Y|X) = TEDXCTY ~  support(X)

Note that X U Y is the join of the two, and support become smaller
e Generate association rules:
1. Find frequent itemsets
2. For each itemset, divide it into 2 subsets, check minConf (2!XI -2 possibilities,
include both way a=>b and b => a)
e  Find rules that are unexpected and actionable
e Association rules can be misleading, add correlation A=>B [supp, conf, corr]

Clustering 1

e Major clustering approaches:
1. Partitioning (k partitions)
2. Probabilistic model-based clustering (EM)
3. Density-based
4. Hierarchical
5. other

e Voronoi model for convex cluster regions (#f5/2& It BELF-47):

e K-Means clustering
Objective: Minimize within-cluster squared distances between mean and elements

Measure of compactness (sum of squared error):

SSE(C) = Z SSE(C)) = Z diSt(Pf“C(p))z

cjee pPEDB

(above 1%t by sum over clusters, 2" by sum over all points)
Computation: NP-hard, so use heuristic algorithms
e K-Means algorithm
1. |Initialization
2. Repeat until no change:
a. Assign object to nearest representative
b. Compute centroids
e K-Medoid
Use the absolute error (total distance)



PAM algorithm:

Partitioning Around Medoids [Kaufman and Rousseeuw, 1990]
= Given k, the k-medoid algorithm is implemented in 3 steps:

Initialization: Select k objects arbitrarily as initial medoids (representatives);
assign each remaining (non-medoid) object to the cluster with the nearest
representative, and compute TD,
Repeat
1. For gach pair (medoid M, non-medoid N)

- compute the value TDyy,, (=

i.e., the value of TD for the partition that results when “swapping” M with N

2. Select the non-medoid N and medoid M for which TDy.,, is minimal
3. I TDyesm < TDoyrrent

- Swap N with M

- Set TD e = TDyesm

Until nothing changes
" Problem of PAM: high complexity (O (tk(n — k)*2))

current*

K-Mode (First Approach)

Distance is sum of Hamming distance

Mode is not necessarily an instance

Choose the one with highest frequency

Actually, applying K-Means on categorical data

Mode of a dataset might no be unique

K-Median

Median in each dimension independently, not an instance

Comparison
k-Means k-Median k-Mode k-Medoid
data vector data ordered categorical metric data
(mean) attribute data attribute data
. high high high low
ultHEUE; 0(tkn) 0(tkn) 0(tkn) 0(tk(n — k)?)
sensitivity to high low low low

outliers

tk(t-k)? is easy, t iterations, k(t-k) possible swaps, (t-k) distance need to be recalculated

Pros:
Easy implementation
Cons:
Need to specify k
Forced to convex space partitions
Depend on initial partition, local optimum
Initialization of k clusters
a. Choose samples, cluster them, use the centers

b. Choose m sets of samples, cluster each of them to get k centers, so k¥m

centers, then cluster these k*m points for m times, each time with

initialization of one set of centers, find the best result centers

Choice of k
Choose by clustering from 2 to n-1
Use silhouette-coefficient

Silhouette coefficient is not monotonic over k



1 .
a(o) = Co)] Z dist(o,p)

pec(o)

(note that not consider o itself, and divide by |C(0)|-1)
b(0) ' ! Z dist(o, p)
0) = min e Lst o,p
ci#C(o) \ |C;|
PEC;

0 if a(o) =0,e.g.|Ci| =1
s(0) = —b(o) —a(0) else =
max{a(o), b(o)}

B S, SF— cluster G2 SR FE -5, SFFTA clusters 2, JFEEE N0 &
Tt b A= — N 55 cluster
Range-1to 1l

silh(C;) = mz s(o) silh(C) = WZ s(o)

0€C; 0ED
Explanation of silhouette coefficient:
Leta (o) # 0, s(o)~1:good; ~0: in-between; ~-1: bad
sc of a clustering

1. 0.7 <sc<1.0strong structure

2. 0.5<5c<0.7 medium structure

3. 0.25<sc<0.5 weak structure

4, sc<0.25 no structure
Clustering 2

e Probabilistic model-based clusters: EM
1. Define clusters as probability distributions
2. Improve the parameters of each distribution

EM not restricted to Gaussian, but as example here

1 — 1 x—u)?
p(X|[,£,O'2) = N(XLM,O'Z) Z—?'e 202 (=)

/\ 2m

° mean € R variance € R

- el T -

;}xlvu,z‘{— N(x|w X) = Wi e 2
° mean vector € R¢ covariance matrix € R*? g0
e Mixture model
K
p(x|0) = E Ty - NV (x|, i)
k=1

x is a d-dimensional vector, or a data
T sum up to 1, each in [0,1]



N
px10) = | |pCale)
Lt (for N data points)
Maximize log-likelihood:

O, = argmax{log p(X|©)}

N

N K K
logp(X|@) = 10gnz Ty - p(Xn i, Zx) = Z IOgZ Ty - P | s Ei)
k=1

n=1k=1 n=1

BT RS, 280, iR E] EM HR T
No closed-form solution to Gaussian, mutual dependency, so apply iteratively

EM algorithm

1. Initialize means ut;, covariances L, and mixing coefficients 1 and evaluate the
initial log likelihood.

2. E-step: Evaluate the responsibilities using the current parameter values:
;- N (X |1, %)

E§=1 My - N(xn“'tka Ek}

3. M-step: Re-estimate the parameters using the current responsibilities:

Vr;ew{x”) =

N new
e = Zn=1 Vi (x,) x,
J g=1 },?}I?W(-xn.]
. r
N .
gnew _ 2=tV (o) (xn — ™) (3 — 7
! = S
I . y?}erxn)
N
hew — E:1‘t=1 }’?}PW(XH)

b e T Y ()

4. Evaluate the new log likelihood log p(X|0"¢") and check for convergence of
parameters of log likelihood (|log p(X|0"*%) - log p(X|0)| < €).
If the convergence criterion is not satisfied, set @ = 0"®*Y and go to step 2.

EM apply to partitioning:
CIUSter(xn) = argmaxke{l,...,l{}{yk (xn)}

Properties:
Better than K-Means on clusters of varying size and differing variances
Local maximum
O(tnk); however t tends to be high
Initialization for centers:
1. Multiple random starts
2. Use K-Means centers
Choose k
- Silhouette coefficient only works for partitioning
- Maximum likelihood estimation is non-decreasing on k

Deterministic (add a function increase on k): logp(X|0x) + P (K)

Stochastic: MCMC



Clustering 3

Partitioning and hierarchical methods are designed to find spherical-shaped clusters, use
density-based for arbitrary shape
1. Core object is those has at least MinPts within circle e-radius, including itself: |Ne (q) |2
MinPts
2. p directly density-reachable from g: qiscore, p € N¢(q)
3. p density-reachable from q: q is core, p within a chain of directly density-reachable; not
symmetric
4. p density-connected g: symmetric, can be both non-core, general than density-
reachable; c(01,02) and c(02,03) => c(01,03); DBSCAN use this
Density-based cluster:

1. maximality: pin S and q is density-reachable from p, then qin S

2. connectivity: each density-connected to all others in S
Density-based clustering:

1. Density-based clusters and noise
DBSCAN algorithm:

foreacho € Ddo
if o is not yet processed then

if 0 is a core-object then

collect all objects density-reachable from o
_ (=]

and assign them to a new cluster.

else
assign o to NOISE =]

— density-reachable objects are collected by performing successive
e-neighborhood queries

FER—MHTLFE cluster, assign noise J& &), 7 LA assign F#T cluster
P — AN AR EIZ A cluster, ppt #H HARR
K-distance(p): distance from p to its k-nearest neighbor (including itself)
K-distance plot: k-distance of all objects, sorted in descending
Setting of € and MinPts:
a. Fix MinPts (default: 2*dimension - 1)
b. User selects € from MinPts-distance plot (by looking for dramatically drop)

Pros:
1. Clusters of arbitrary shape (not convex)
2. Number of cluster no need to decide
3. Separate noise
4. Use spatial index structures O(n log n), without O(n?)
5. Nequery: O(n)
Cons:

1. Difficult to determine parameters (L2l distance plot /13, FrbA
HiA T hierarchical clustering)
2. Sensitive to parameter setting
Hierarchical clustering
Dendrogram( & Si#)
Can be agglomerative or divisive



Leaf is a single object

Internal node is the union of two sub-trees

Height of internal node represents distance of two children
Agglomerative hierarchical clustering

1. Initially, each object forms its own cluster

2. Consider all pairwise distances between the initial clusters (objects)

3. Merge the closest pair (A, B) in the set of the current clusters into a new
cluster C=AUB

4, 'Remove A and B from the set of current clusters; insert C into the set of
current clusters

5. If the set of current clusters contains only C (i.e., if C represents all objects
from the database): STOP

6. Else: determine the distance between the new cluster C and all other
clusters in the set of current clusters; gotostep 3. 3

TP AHIT I cluster &, ARG B4 s 09, THEHT R cluster (R ES
Distance for clusters
Single-Link: dist _sl(X.Y)= rglin}_ dist(x,y)

xeX ye

Complete-Link: dist _cl(X.Y)= max dist(x,y)

xeX . yel

1
|17 Zdﬁs?(x,_ »)

. | Y ‘ xeX.ysl

Average-Link:  dist _al(X.Y)=

Divisive hierarchical clustering (DIANA)
Select the cluster C with largest diameter for splitting
Search the most disparate observation o in  (highest average dissimilarity)
— Spi'h@'[?mup = {o} ()
— Iteratively assign the o' € C\SplinterGroup with the highest D(0') > 0 to the
splinter group until for all 0" € C\SplinterGroup: D(0") < 0

, d(o',07) d(o',0:)
D(U ) = T Codimt ool T T it oo 1
ojeC\SplinterGroup |C\SplinterGroup| ojESplinterGroup |SplinterGroup|

P SAAFERI S, RJEFE cluster HAIE IR RS L BIAMEIR I 5, HEFPHE R —4
BRI 2, ERF R A3 splinter R S ELRAME I

Agglomerative vs divisive

Divisive is conceptually more complex

Agglomerative on local patterns

Divisive use complete information

Core-distance:

If q is core object w.r.t. € and MinPts, then smallest distance such that o is a core object
Else undefined

Reachability-distance: minimum radius value that makes p directly density-reachable from
q

If g is core object w.r.t. € and MinPts, then max{core-distance(q), dist(p, q)}

Else oo

OPTICS:

the core distance is also exported, but this is not required for further processing



controlList is sorted with reachability-distance in ascending

foreach o € Database = ( reachab
// initially, o.processed = false for all objects o N
if o.processed = false: P
insert (o, o) into ControlList; (LontrolList
while ControiList contains objects not vet processed lj
select first element (o, 7-disf) from ConfrolList. (=)
retrieve V(o) and determine c_disi= core-distance(o): s
set o.processed = true;
write (0. 7_dist, ¢_dist) to file:
if o is a core object at any distance <
foreach p € N (o) not yet processed:
determine 7 dist, = reachability-distance(p. o).
if (p. ) ¢ ControlList
msert (p. r_dist,) in ControlList;
else if (p. ofd_r_d?.sr) € CommrolList and r_dist, < old_r_dist
update (p. r_dist,) in ControlList.

LA e % 1

ControlList TTRET T, HBEHE AL process 1)

Plot in the order of file, against reachability-distance

F BT undefined, ool 2 1 y il

Performance #1 DBSCAN Z51EL, O(n log n) with spatial indexed support, O(n?) without
Insensitive to parameter settings, need MinPts, and € to be large

u

databa

Hierarchical clustering discussion
Pros:
1. No number of clusters
2. No or robust parameters
3. Hierarchy of clusters

1. Runtime for agglomerative O(n? log n) sl L2 n 58, SECETHEFBEix /)N, divisive
0O(2"), OPTICS is better
2. User has to choose final clustering
Evaluation of clustering result
Expert

Internal: like silhouette or sum of square errors (E{3 1 variance)

. 2
SSE(C) = = Yeiee Lpec, dist(p, u(C)

External: need true clusters
External measures (FH)/& C, EAHZ G)

Recall: rec(C;, G;) = lC‘*GLJGl’l Precision: prec(C;, G;) = %
F-Measure: F(Ci, Gj) = 2;::{(5?2?{3*177”60(?{;6.):)
G j)+prec(CuG))
Purity (P): P(C,G) = Zciec%pur(c‘i.g) pur(Cy,§) = maxprec(Ci, Gj)
Recall HZFINAF T %/, precision i3k A Chirh 2

Faetift LA
Purity 2T cluster B i = A eI, 2R)EF3
Random index:

a seFTA FITE C FA cluster B, HFENTE G K cluster L[ pair



b &4bT C FAIE cluster, WALT G HANE cluster [ pair
(n 2)72 AT A AT BEFIXT, n(n-1)/2
at+b _a+b

at+btet+d (7

o # A mutual information (i.e. information gain): H 5t /& 4
1(¢,g) = H(C) — H(C|G) = H(G) — H(G|C)

Normalized information gain:

= _1C9
NMI(C,G) - JHOHG)

Classification 1

e Classification vs prediction
Classification on categorical class labels
Prediction on continuous-values functions (usually with regression)
e Nearest neighbor classifier
1. NN classifier: 1-neighbor
2. k-NN
3. Weighted k-NN: use 3 kinds of weight
4. Mean-based NN: training i 1155 class [f] mean, 73 J58tE ZE W mean i
e 3 weights
Standard: equal
Distance: 1/(distance?)

a-priori: class frequency, /0L, 4T

e Pros:
1. Can be applied to non-vector data
2. Only requires similarity function (i.e. metric space)
3. High accuracy
4. Easy to add new training data
5. Robust to noisy data
Cons:

1. Implementation can be inefficient: should create index structure in training phase
2. No explicit knowledge
3. Curse of dimensionality
e Instance-based learning (lazy evaluation): k-nearest neighbor
Eager evaluation: decision tree, Bayes classifier

Classification 2

Decision tree:
e Tree construction
Greedy algorithm



Condition to stop:

Belong to same class

No remaining attributes — majority voting

No samples left (nothing has this as value, use majority of all examples this round)
Algorithm:

ID3(Examples, ClassLabels, Attributes)
Create a Rootnode for the tree;

If all Examples have the same Classl abel, return Root with corresponding label;

If Attributes=o, return Root with label = most common value of Classlabelsin Examples;
Else

A=the ‘best’ decision attribute for next node
Assign A as decision attribute for Root
For each possible value v, of A:
Generate branch corresponding to test 4 = v;
Examples, = examples that have value v; for 4;

If Examples,, = 0, add leaf node with label = most common value of ClassLabelsin Examples;,
Else add subtree ID3(Examples,, ClassLabels, Attributes\{A});

R PkERIF X 7, RG5>
Split strategies:

Need to be disjoint and complete
Information gain:

entropy(T) = — Z p; - log, p; for k classes c; with

frequencies p;
=1
R 2 NI
information gain(T,A) = entropy(T) — Z |T| - entropy(T;)

Gini index
k
gini(T) =1 — Z p? for k classes c; with

frequencies p;
=1

m
T.
ginia(1) = o gini(T)
=1
Misclassification error

for k classes c; with

ET?’OT(T) =1- mC?X Pi frequencies p;

Errory(T) = z T - Error(T;)

Summary: all of the three need to be the small the better



0sr Entropy 1
08t g
07t .
0B .
eer Gini 1
04t .
03 .

aal Misclassification

error
o1

2-class case

Types of split

Categorical: 1. equal 2. subset

Numerical: 1. cut with one < (can order test samples and consider every mean of adjacent
two samples) 2. Intervals

Tree pruning

1. Prepruning:

Halt before goodness measure falling below a threshold

Like using minimum support: minimum number of data objects a leaf node contain
Minimum confidence: minimum fraction of the majority class in a leaf node

But prepruning is difficult to set appropriate thresholds and has less information for
decision than postpruning, so worse quality

2. Postpruning

Reduced-error pruning:5#.i2: 1

®* Decompose classified data into training set and test set

= (Create a decision tree E for the training set

" Prune E by using the testset T

— determine an interior node v of E whose pruning reduces the number of
misclassified data points on T the most (i.e., replace the subtree S of node v
by a leaf. Determine the value of the leaf by majority voting)

— prune
— finish if no such interior node exists
AR, & prune B K majority vote S ANSARUE, S UFIIARAN A, HEE
A B H) I
Minimal cost complexity pruning: 5.7 2
Notation: size |E| is the number of leaf nodes

Cost-complexity: measure both classification error Fr and size of tree:

CC,(E,a)=FE.(E)+a| E|
o TR RIFFEEEN, X TH Ee Fl{e} 1> node IX PR




for small values of a.: CCHE,, a) < CC{e}, o)

for large values of a.: CC,(E,, o) > CC,{{e}, )
Ayt CCT(Ee! acrit) = CCT({E'}J acrit)

eri 3L Qe L2 HIWT tree weak 2 FE (K47 A
/N weak, EESCHE prune
Algorithms:

= Start with a complete tree £
= |teratively remove the weakest link from the current tree
= |f there are several weakest links, remove them all in the same step
= Result: sequence of pruned trees
- E(ay) > E(ay) >...> E(a,,) wherea; <a, <...<a,,

*  Selection of the best E(,)

— Estimate the classification error on the overall data set by an |-fold cross
validation on the training set

KRS a KITHE, tree BORMTEILL, FA1E 2] asequence of ANFEIFEE pruned
tree, MHEERIFHT. X DABRZAT, AHBIM test set

e (Classification rule from tree:
IF forecast = ‘rainy’ AND wind = ‘weak’ THEN playing_tennis = ‘yes’

e Pros:
1. Convertible to rules, represent explicit knowledge, intuitive to users
2. Can be categorical or continuous-valued
3. Hierarchical and linear
4. Fast learning speed
5. Fast classification speed
6. Accuracy is good

Cons:

1. Not stable, small changes of data, large change of tree

Bayesian classifier
e For an object o, see it possibility in class Cj
p(ole) -p(c)
()~ sl ()

Value of p(0) is constant and
does not change the result

argmax{p(¢;|0)} = argmax
CjEC Cj

p(cj)ift 21X class 7F T £ B i L)

p(o] cj)iX ™A 75 L A B3 /2 count frequency
o plo|c) =R it IriE

parametric method: single gaussian distribution

non-parametric methods: kernel methods

mixture models: mixture of Gaussian

{H 2 R A 2 4E 5 172> curse of dimensionality,  naive Bayes Wiz M 4E
e Naive Bayes classifier:



data has d dimensions, need to be conditionally independent, i.e.

d
p(o|cj) = p(ol, ...,od|cj) = ﬂp(od(:j)
i=1

24 KRR ploi] Cj)
Categorical: relative frequency
Continuous: possibility distribution, L UI7E R4 single Gaussian H

_ 1(_”111)2
(O1 | C; ) \/_0, ] 2\ oy,

SR J5 H Bayes K43 Tl A T

Calculate the probabilities for both classes: With:
1 = p(highlq) + p(low|q)

p(qlhigh) - p(high)

p(highle) = 7
__plage = 60lhigh) - p(car type = family|high) - p(max speed = 190|high) - p(high)
p(q?))
N(27.67,13.61|60) -+ - N(222,36.49]190) - 2
= 3 5 = 15.32% =
p(@)

XENZEEE p(q), BHIERHAN 1 &AL
Bayesian classifier (Z BT A& naive [, HSIEWE, HEREME)
bb an 4= A B AH 9% Gaussian

, | —i(o—ﬂ,,-)zgl(o—ﬂj)r
P(o|C.)= —e ?
T

|Zj| is determinant of X j

Two limits:
JUA class MR ARIRARHEAN 2R T
BEZHARE,  WAFR G0
Pros:
a. High accuracy
b. Adopted new training objects easily
c. Canincorporate expert knowledge to the prior of P(Ci)

a. Often conditional probabilities not available
b. Curse of dimension
Independence hypothesis
Pros:
Efficient computation
Optimal classifiers
Break limitation: Bayesian networks, decision trees
Evaluation of classification
Separate data to 2 sets, one for training, one for testing



If not possible, then
m-fold cross validation:
a. equally into m subsets
b. iteratively use m-1 to train, 1 to test
c. combine m accuracy values to an overall accuracy, combine m generated model
to an overall model
leave-one-out:
a. special case of cross validation with m equal to size of data set |O| =N
b. so, left only 1 to be test, accuracy = right/| O]
c. good for nearest-neighbor classifiers
Measurements
Classification Accuracy:

[{o €T,K(0) = C(0)}|
T

GT(K) -

Classification Error:

|{o € T,K(0) # C(0)}|
IT|

FT(K) -

R IE R, Ay 1

Resubstitution error:
|{o € TR,K(0) # C(0)}|
ITR|

FTR(K) =

(true) classification error:

{0 € TE, K (0) % ((0)}]

Frr(K) =

TE( ) |TE|
AR LRI ZRAE NI EE L B R R
Overfitting

Reasons:

a. bad quality of training data

b. different statistical characteristics of training data and test data
to avoid it:

a. removal of noisy and erroneous training data

b. appropriate size of training set

c. appropriate samples
underfitting
Summary:



Decision Trees

k-NN classifier

Bayes classifier

Compactness Compact if pruned No model Model dependent
Interpretability of model | Good - Model dependent
Explanation of decision Good Medium-Good decision Medium-Good probabilities

rules for decision
known

object set known

of decision are given

Training time Low-Medium No training Model dependent
Test time Low Low (index) Model dependent
Very high but often Low
Scalability Good Good (index) Model dependent but
Bad often Good
Robustness Low High High
Data types Categorical and Arbitrary data (need Arbitrary data (need
vector distance function) probability distribution)
Madel Set of (axis parallel) Model free Statistical density

hyperplanes

distribution




