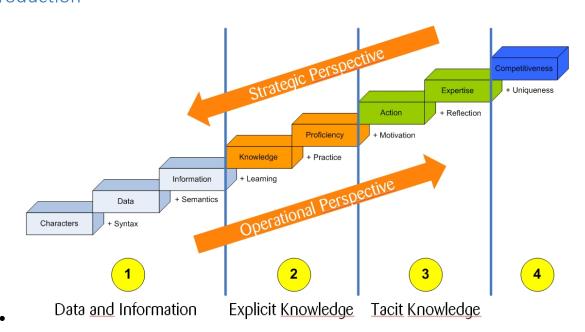
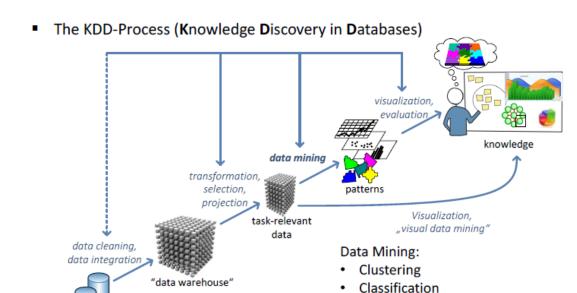
# Data Mining Algorithms – summary

# Contents

| Introduction            | 1  |
|-------------------------|----|
| Data warehousing 1      | 2  |
| Data warehousing 2      | 6  |
| Frequent pattern mining | 8  |
| Clustering 1            | 11 |
| Clustering 2            | 13 |
| Clustering 3            | 15 |
| Classification 1        | 18 |
| Classification 2        | 18 |

# Introduction





Frequent Pattern Mining Indexing Structures

Similarity Search

上图中第二步 transformation 包括 3 类:

databases/

information repositories

Normalization: e.g. 0 mean 1 variance

Discretization: [0,100] -> low, medium, high

Derive rows; attributes: total amount per month; diff = current – previous

- Prediction vs classification: numerical output (by regression)/ classes
- Data mining functionalities: characterization, discrimination(前俩是根据现实层级知识 处理数据), association, classification, clustering, outlier and trend analysis, etc.

# Data warehousing 1

- Values 有两类:
  - Categorical:

Nominal: No natural order among values

Ordinal: Some ordering exists

Numerical:

Discrete: Possible values can be enumerated Continuous: Infinitely many possible values

- Dimensionality of data:
  - 1. One-dimensional
  - 2. Multi-dimensional
  - 3. High-dimensional
  - 4. No-dimensional: always talk about metric data

Metric data is parallel to this categories.

- Metric data has a metric distance: e.g. images, graphs, itemset ...
  - 1. Symmetry: d(p, q) = d(q, p)
  - 2. Definiteness:  $d(p, q) = 0 \Leftrightarrow p = q$
  - 3. Triangle inequality:  $d(p, r) \leq d(p, q) + d(q, r)$

- Classes of measures:
  - 1. Distributive: same applied, e.g. count, min, sum, max
  - 2. Algebraic: can be computed, e.g. average
  - 3. Holistic: no bound on data needed, e.g. median, mode: value most often, rank: k-smallest
- Measures for central tendency
  - 1. Mean
  - 2. Midrange: (max min)/2
  - 3. Median: apply also to ordinal; if even, median is usually defined to be the mean of the two middle values
  - 4. Mode: apply also to no ordering; most frequent data
- Measures for dispersion of data
  - 1. Quartiles: Q1, Q2 ...
  - 2. Inter-quartile range: Q3 Q1
  - 3. Five number summary: min, Q1, median, Q3, max
  - 4. Boxplot: (plot outlier individually)
  - 5. Outlier: values that 1.5 \* inter-quartile range below Q1 or above Q3
  - 6. Variance (scalable computation) and deviation:

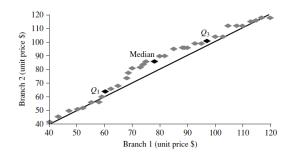
$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2 = \left(\frac{1}{N} \sum_{i=1}^{N} x_i^2\right) - \bar{x}^2$$

deviation measures spread about the mean and should be considered only when the mean is chosen as the measure of center.

- Visualization:
  - 1. Geometric: parallel coordinates, scatterplot
  - 2. Icon-based: Chernoff faces
  - 3. Pixel-oriented: recursive patterns
  - 4. Other: hierarchical, graph-based, hybrid
- Common ones:
  - a. Box-plot: Minimum, Q1(四分位数第一个), Median, Q3, Maximum
  - b. Histogram
  - c. Quantile plot: sort the data in ascending, 然后画图,横向均匀,递增 1/N,N 是数据个数

$$f_i = \frac{i - 0.5}{N}$$

d. Quantile-quantile plot:两个支部如果数量一样,直接画图,如果不一样,多的按照少的那个插值算一下,因为 q plot 中的比值都一样,所以可以省略掉



- e. Scatter plot -> scatter plot matrix -> parallel coordinates(逐层递增展示高维的能力,但是 parallel 这个不能很好的展示大量数据 1), matrix and parallel 的 dimension reordering 是通过 quality metrics 来评价,可以 reduce clutter。
- f. Parallel coordinates: min-max range in each axis, 不同 order 可以 focus on clusters or correlation
- g. Loess curve (local regression; on scatter plot): two parameters: a smoothing parameter (0-1, percentage of near points to be used), and the degree of the polynomials that are fitted by the regression
- h. Pixel-oriented visualization: we can use any 2-D space-filling curve, 更高层 pattern 自己排布; each data for a pixel; have sub windows for each dimension; Inside a window, the data values are arranged in some global order shared by all windows.
- i. Chernoff faces
- Data warehouse is a decision support database, maintained separately, support information processing, primary source for data mining
- Warehouse characteristics:
  - 1. Subject-oriented: around major subjects, simple and concise, focus on decision makers
  - 2. Integrated: integrating databases, flat files, online records; clean and integration before moving in
  - 3. Time-variant: historical data, has element of time
  - 4. Nonvolatile: initial and access, no update, physically separate storage
- Data warehouse vs operational DBMS

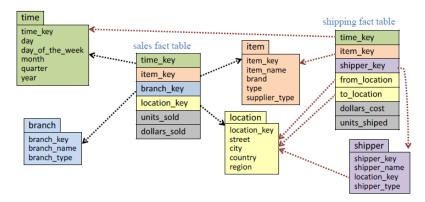
|                    | OLTP (online transaction processing)                    | OLAP (online analytical processing)                                       |
|--------------------|---------------------------------------------------------|---------------------------------------------------------------------------|
| Major task of      | traditional relational DBMS                             | data warehouse systems                                                    |
| Function           | Day to day operations                                   | Decision support                                                          |
| Database Design    | ER + application-oriented                               | Star schema + subject oriented                                            |
| Data               | Current, up-to-date, detailed, isolated                 | Historical, consolidated, integrated                                      |
| Users              | Clerk, IT professionals                                 | Knowledge worker                                                          |
| System orientation | Customer                                                | Market                                                                    |
| Access patterns    | Read/write/update operations, index/hash on primary key | Read-only but complex queries     ETL/R: Extract, Transform, Load/Refresh |
| Units of work      | Short, simple transactions                              | Complex queries                                                           |
| # records accessed | Tens                                                    | Millions                                                                  |
| # users            | Thousands                                               | Hundreds                                                                  |
| DB size            | 100 MB – GB – TB                                        | 100 GB – TB – PB                                                          |
| Metric             | Transaction throughput                                  | Query throughput, response                                                |

- Modeling schemes for data warehouse
  - 1. Star schema

- 2. Snowflake schema
- 3. Fact constellation (星座)
- Star schema:

A fact table (dimensions i.e. keys, and measures i.e. dependent attributes) in the middle connected to a set of dimension tables; each dimension is represented by only one table, and each table contains a set of attributes

- Snowflake schema: some dimensional hierarchy normalized into a set of smaller dimension tables
- Fact constellations: multiple fact tables



- Data warehouse vs data mart: data warehouse is enterprise-wise, has larger span, often
  use fact constellation schema; data mart is a department subset of the data warehouse,
  often uses star or snowflake schema.
- OLAP operations:
  - 1. Roll-up: either by climbing up a hierarchy (city to country) or by dimension reduction (remove time 那个方向,就剩下一个总和)
  - 2. Drill-down: stepping down a hierarchy or add dimension
  - 3. Slice: a selection on one dimension
  - 4. Dice: a selection on two or more dimensions
  - 5. Pivot (rotate):

| Quarter 1 |    |     | Quarter 2 |    |     | Quarter 3 |    |     |
|-----------|----|-----|-----------|----|-----|-----------|----|-----|
| TV        | PC | VCR | TV        | PC | VCR | TV        | PC | VCR |
|           |    |     |           |    |     |           |    |     |
|           |    |     |           |    |     |           |    |     |



| TV |    |    | TV PC |    |    | VCR |    |    |
|----|----|----|-------|----|----|-----|----|----|
| Q1 | Q2 | Q3 | Q1    | Q2 | Q3 | Q1  | Q2 | Q3 |
|    |    |    |       |    |    |     |    |    |
|    |    |    |       |    |    |     |    |    |

Rotate the axes in a 3-D cube, or transforming a 3-D cube into a series of 2-D planes.

- 6. Drill-across: executes queries involving more than one fact table
- 7. Drill-through: uses relational SQL facilities to drill through the bottom level of a data cube down to its back-end relational tables

 A starnet query model consists of radial lines (a concept hierarchy for a dimension), each abstraction level in a hierarchy is called a footprint (showed as small dots)

# Data warehousing 2

- Data reduction:
  - 1. Numerosity reduction
  - 2. Dimensionality reduction
  - 3. Discretization (i.e. quantization) and concept hierarchy
  - 4. generalizaition
- Numerosity reduction:
  - 1. Parametric methods: estimate model parameters, store them, discard data
  - 2. Non-parametric methods: sampling, histograms, cluster (the cluster representations of the data are used to replace the actual data.)
- Dimensionality reduction, i.e. feature selection
- Heuristic feature selection methods:
  - 1. Best single feature under feature independence assumption: significance test
  - 2. Step-wise best feature selection: pick the best conditioned to chosen features
  - 3. Step-wise feature elimination: repeatedly eliminate worst
  - 4. Best combined feature selection and elimination
  - 5. Optimal branch and bound: feature elimination and backtracking
- Transform feature space basis:
  - 1. Data dependent: PCA
  - 2. Data independent: random projections
- PCA:
  - 1. Computation of centered data matrix: adapt value range and subtract mean
  - 2. Compute covariance matrix
  - 3. Eigen decomposition (注意,矩阵转置然后一乘,就是 cov)

$$\frac{1}{N}\tilde{A}^{T} \cdot \tilde{A} = \underbrace{\begin{array}{c} \text{diagonalization} \\ \text{Cov} = V \cdot D \cdot V^{T} \end{array}}_{\text{eigenvector matrix}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{eigenvector matrix}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{output}} D = \underbrace{\begin{array}{c} v_{1} \\ 0 \\ 0 \\ 0 \end{array}}_{\text{ou$$

4. Transformation of data (normalized 的数据右乘矩阵即可)

$$Cov = V \cdot D \cdot V^T \quad \rightarrow \quad \tilde{A} \cdot V$$

- 5. Truncation (截断) of transformed data (就是从前往后选取几列就成)
- PCA properties:
  - 1. High complexity  $O(nd^2 + d^3)$  (covariance matrix + diagonalization) for n points and d dimensions
  - 2. Optimal reconstruction w.r.t. mean-square error
  - 3. Lost 'semantics', i.e. hard to interpret about original dimensions

Random projection:

Randomly choose k vectors in d dimensions (k is old, d is new size)

No need orthogonal

But normalized in O(dk)

Application complexity O(ndk) for n data

Achlioptas's simple approach:

$$R,R' \in R^{k\times d}$$

$$R[i,j] = \begin{cases} +1 & with \ probability \ 1/2 \\ -1 & with \ probability \ 1/2 \end{cases}$$

$$R[i,j] = \begin{cases} +1 & with \ probability \ 1/2 \\ -1 & with \ probability \ 1/2 \end{cases}$$
 
$$R'[i,j] = \sqrt{3} \cdot \begin{cases} +1 & with \ probability \ 1/6 \\ 0 & with \ probability \ 2/3 \\ -1 & with \ probability \ 1/6 \end{cases}$$

Application on each data, each row in R or R' has length to 1

$$g(x) = \frac{1}{\sqrt{r}} \cdot x \cdot R$$
$$g'(x) = \frac{1}{\sqrt{r}} \cdot x \cdot R'$$

- Concept hierarchies: from low level concepts to higher level
- Discretization (quantization): divide range into intervals
  - 1. Binning
  - 2. Clustering (can be hierarchical clustering)
  - 3. Entropy-based discretization
- Binning: divide data into bins and store a representative (average, median...) for each bin
  - 1. Equi-width: easy; but outliers dominate (因为 bin 个数事先确定)
  - 2. Equi-height: good data scaling, more robust to outliers; but bad when a single value's frequency is high (intervals complete and disjoint)
  - 3. V-optimal: minimize variance within bin;注意 bound 不是真实数据取的值,而 是范围,也就要 complete,虽然总体的头尾确实是 min, max 附近的数

$$\sum_{i=1}^{N} \sum_{j=lb_i}^{ub_i} \left( f(j) - avg_i \right)^2 \quad \text{where:} \\ N = \text{number of buckets} \\ lb_i, \, ub_i = \text{lower and upper bounds of } i\text{-}th \text{ bucket} \\ f(j) = \text{number of occurrence of the value } j \\ avg_i = \text{average of frequencies occurring in } i\text{-}th \text{ bucket}$$

Entropy-based discretization: partition into two (at a time), minimize the entropy

$$E(S,T) = \frac{|S_1|}{|S|} Ent(S_1) + \frac{|S_2|}{|S|} Ent(S_2) \quad Ent(S) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

实际上,需要两个变量:也就是要被分的,和参照的 class

http://kevinmeurer.com/a-simple-guide-to-entropy-based-discretization/

m 就是参照的 class 的个数, p 就是那个 bin 内部各 class 的概率, log2 是因为 bit

Generalization:

Data cube (OLAP) approach; manual

Attribute-oriented induction approach; automated

**OLAP** approach

Pros: can be performed on data cube by roll-up and drill-down

Cons: handle simple nonnumeric or simple aggregated numeric values; cannot tell what level should reach

### Example:

| Name           | Gender   | Major           | Birth-Place              | Birth_date | Residence                   | Phone #  | GPA          |
|----------------|----------|-----------------|--------------------------|------------|-----------------------------|----------|--------------|
| Jim Woodman    | М        | CS              | Vancouver, BC,<br>Canada | 8-12-81    | 3511 Main St.,<br>Richmond  | 687-4598 | 3.67         |
| Scott Lachance | М        | CS              | Montreal, Que,<br>Canada | 28-7-80    | 345 1st Ave.,<br>Richmond   | 253-9106 | 3.70         |
| Laura Lee      | F        | Physics         | Seattle, WA,<br>USA      | 25-8-75    | 125 Austin<br>Ave., Burnaby | 420-5232 | 3.83         |
|                |          |                 |                          |            |                             |          |              |
| Removed        | Retained | Sci,Eng,<br>Bus | Country                  | Age range  | City                        | Removed  | Excl,<br>VG, |

Then we can sum and count

Attribute-oriented induction (AOI)

By attribute removal or attribute generalization

Put threshold on distinct values of an attribute or control the size of final relation

- Data cleaning
  - 1. Fill in missing values
  - 2. Identify outliers and smooth out noisy data
  - 3. Correct inconsistent data
- Missing data
  - 1. Ignore the tuple
  - 2. Fill in manually
  - 3. Use a default constant
  - 4. Use mean
  - 5. Use mean of same class
  - 6. Use most probable value (e.g. by decision tree)
- Noisy data and inconsistent data

Binning (then smooth)

Clustering

Combined computer(detect) and human(correct)

Regression

Data cleaning is not always necessary, some data mining can deal with uncertain data

# Frequent pattern mining

• Frequent itemset notation:

Items I = {i1, i2, i3, ...}: set of all possible items

k-itemset itemset of length k

support number of transactions in database has this itemset

frequent itemset support(X) ≥ minSup

- Apriori principle:
  - 1. Any non-empty subset of a frequent itemset is frequent, too!
  - 2. Any superset of a non-frequent itemset is non-frequent, too!
- Apriori algorithm:

- Variables
  - Ck: candidate itemsets of size k
  - L<sub>k</sub>: frequent itemsets of size k

 $L_1 = \{\text{frequent items}\}$ 

for  $(k = 1; L_k != \varnothing; k++)$  do begin

join  $L_k$  with itself to produce  $C_{k+1}$ 

discard (k+1)-itemsets from  $C_{k+1}$  that contain non-frequent

k-itemsets as subsets

 $C_{k+1}$  = candidates generated from  $L_k$ 

for each transaction t in database do

Increment the count of all candidates in  $C_{k+1}$ 

that are contained in t $L_{k+1}$  = candidates in  $C_{k+1}$  with minSup

return  $\bigcup_k L_k$ 

#### Can also be viewed as:

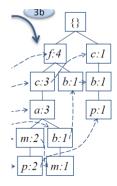
- 1. Join: p and q are joined if they share the same first k-1 items (sort in some order, only if firsts are the same)
- 2. Prune: delete k-subset that is not frequent
- 3. Scan: count support
- Hash-tree
  - 1. Leaf nodes of hash-tree contain lists of itemset and their support (i.e., counts)
  - 2. Interior nodes contain hash tables

Construction: search and insert, if overflow, transform leaf node to internal node Counting: 使用时只按照包含的子树来查看,(1,3,7,9,12)找 3-itemset,那么 root 只看前三位,之后也是只看能包含到的位置

FP-tree

#### **Construction**:

- 1. Scan DB, find frequent 1-itemsets
- 2. Retain only frequent ones in transaction and order transaction in descending order
- 3. Scan DB again, construct FP-tree



### Mine FP-tree:

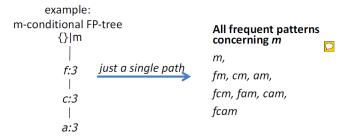
- 1. Construct conditional pattern base for each node in the FP-tree
- 2. Construct conditional FP-tree for each conditional pattern base (会去掉不够 frequent 的,就是正常的构造 tree,不过记得头部加上 condition)
- 3. Recursively mine, if single path or empty, enumerate all

conditional pattern base:

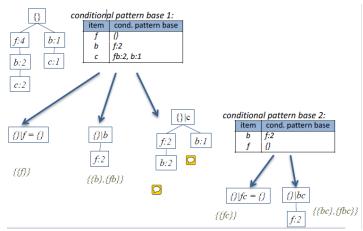
| Ì | item | cond. pattern base |
|---|------|--------------------|
| Ì | f    | <i>{}</i>          |
|   | С    | f:3, {}            |
|   | а    | fc:3               |
|   | b    | fca:1, f:1, c:1    |
|   | m    | fca:2, fcab:1      |
|   | p    | fcam:2, cb:1       |

注意数字是自己 node 中的数

Single path enumerate (总是包含 condition,别的任选):



说白了,就是不断 tree base 转化,因为每次 tree 都是单个 base 的,所以简化



### Pros:

- 1. No candidate generation
- 2. Compact data structure
- 3. Eliminate DB scan
- Closed frequent itemset: no proper super-itemset with the same support (complete information)
- Maximal frequent itemset: no proper super-itemset with support ≥ minSup (not complete information)
- Association rule: An association rule is an implication of the form  $X \Rightarrow Y$  where  $X, Y \subseteq I$  are two itemsets with  $X \cap Y = \emptyset$ .

注意下式 support 尾巴并不对,除以|D|不能省略,记住两个都小于 1, X 并 Y 更大,更少见

$$support(X \Rightarrow Y) = P(X \cup Y) = \frac{|\{T \in D | X \cup Y \subseteq T\}|}{|D|} = support(X \cup Y)$$

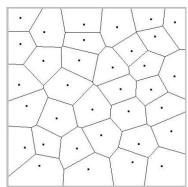
$$confidence(X\Rightarrow Y) = P(Y|X) = \frac{|\{T\in D|X\cup Y\subseteq T\}|}{|\{T\in D|X\subseteq T\}|} = \frac{support(X\cup Y)}{support(X)}$$

Note that  $X \cup Y$  is the join of the two, and support become smaller

- Generate association rules:
  - 1. Find frequent itemsets
  - 2. For each itemset, divide it into 2 subsets, check minConf ( $2^{|X|}$  -2 possibilities, include both way a => b and b => a)
- Find rules that are unexpected and actionable
- Association rules can be misleading, add correlation A=>B [supp, conf, corr]

# Clustering 1

- Major clustering approaches:
  - 1. Partitioning (k partitions)
  - 2. Probabilistic model-based clustering (EM)
  - 3. Density-based
  - 4. Hierarchical
  - 5. other
- Voronoi model for convex cluster regions (都是垂直平分):



K-Means clustering

Objective: Minimize within-cluster squared distances between mean and elements Measure of compactness (sum of squared error):

$$SSE(\mathcal{C}) = \sum_{C_j \in \mathcal{C}} SSE(C_j) = \sum_{p \in DB} dist(p, \mu_{C(p)})^2$$

(above 1st by sum over clusters, 2nd by sum over all points)

Computation: NP-hard, so use heuristic algorithms

- K-Means algorithm
  - 1. Initialization
  - 2. Repeat until no change:
    - a. Assign object to nearest representative
    - b. Compute centroids
- K-Medoid

Use the absolute error (total distance)

### PAM algorithm:

Partitioning Around Medoids [Kaufman and Rousseeuw, 1990]

■ Given k, the k-medoid algorithm is implemented in 3 steps:

Initialization: Select k objects arbitrarily as initial medoids (representatives); assign each remaining (non-medoid) object to the cluster with the nearest representative, and compute  $\mathsf{TD}_{\mathsf{current}}$ .

#### Repeat

- 1. For <u>each</u> pair (medoid M, non-medoid N)
  - compute the value TD<sub>N→M</sub>,

i.e., the value of TD for the partition that results when "swapping" M with N

- 2. Select the non-medoid N and medoid M for which  $\mathsf{TD}_{\mathsf{N} \leftrightarrow \mathsf{M}}$  is minimal
- 3. If  $TD_{N \leftrightarrow M} < TD_{current}$ 
  - Swap N with M
  - Set TD<sub>current</sub> := TD<sub>N↔M</sub>

**Until** nothing changes

- Problem of PAM: high complexity  $(O(tk(n-k)^2))$
- K-Mode (First Approach)

Distance is sum of Hamming distance

Mode is not necessarily an instance

Choose the one with highest frequency

Actually, applying K-Means on categorical data

Mode of a dataset might no be unique

K-Median

Median in each dimension independently, not an instance

Comparison

|                         | <i>k</i> -Means       | <i>k</i> -Median          | <i>k</i> -Mode                | <i>k</i> -Medoid                 |
|-------------------------|-----------------------|---------------------------|-------------------------------|----------------------------------|
| data                    | vector data<br>(mean) | ordered<br>attribute data | categorical<br>attribute data | metric data                      |
| efficiency              | high $O(tkn)$         | high $\mathit{O}(tkn)$    | high $O(tkn)$                 | $\int_{0}^{\infty} O(tk(n-k)^2)$ |
| sensitivity to outliers | high                  | low                       | low                           | low                              |

tk(t-k)<sup>2</sup> is easy, t iterations, k(t-k) possible swaps, (t-k) distance need to be recalculated

• Pros:

Easy implementation

• Cons:

Need to specify k

Forced to convex space partitions

Depend on initial partition, local optimum

- Initialization of k clusters
  - a. Choose samples, cluster them, use the centers
  - b. Choose m sets of samples, cluster each of them to get k centers, so k\*m centers, then cluster these k\*m points for m times, each time with initialization of one set of centers, find the best result centers
- Choice of k

Choose by clustering from 2 to n-1

Use silhouette-coefficient

• Silhouette coefficient is not monotonic over k

$$a(o) = \frac{1}{|C(o)|} \sum_{p \in C(o)} dist(o, p)$$

(note that not consider o itself, and divide by |C(o)|-1)

$$b(o) = \min_{C_i \neq C(o)} \left( \frac{1}{|C_i|} \sum_{p \in C_i} dist(o, p) \right)$$

$$s(o) = \begin{cases} 0 & if \ a(o) = 0, e.g. |C_i| = 1\\ \frac{b(o) - a(o)}{\max\{a(o), b(o)\}} & else \end{cases}$$

单个点如上,对一个 cluster 就是求和算平均,对所有 clusters 也是,注意设置为 0 是避免全都是一个点的 cluster

Range -1 to 1

$$silh(C_i) = \frac{1}{|C_i|} \sum_{o \in C_i} s(o)$$
  $silh(C) = \frac{1}{|D|} \sum_{o \in D} s(o)$ 

Explanation of silhouette coefficient:

Let  $a(o) \neq 0$ , s(o) ~1: good; ~0: in-between; ~-1: bad s<sub>C</sub> of a clustering

- 1.  $0.7 < s_C \le 1.0$  strong structure
- 2.  $0.5 < s_C \le 0.7$  medium structure
- 3.  $0.25 < s_C \le 0.5$  weak structure
- 4.  $s_C \le 0.25$  no structure

# Clustering 2

- Probabilistic model-based clusters: EM
  - 1. Define clusters as probability distributions
  - 2. Improve the parameters of each distribution
- EM not restricted to Gaussian, but as example here

$$p(x|\mu,\sigma^2) = \mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{1}{2\sigma^2} \cdot (x-\mu)^2}$$

•  $mean \in \mathbb{R}$  variance  $\in \mathbb{R}$ 

$$p(x|\mu, \Sigma) = \mathcal{N}(x|\mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} \cdot e^{-\frac{1}{2} \cdot (x-\mu)^T \cdot (\Sigma)^{-1} \cdot (x-\mu)}$$
The vector  $\in \mathbb{R}^d$  covariance matrix  $\in \mathbb{R}^{d \times d}$ 

Mixture model

$$p(\boldsymbol{x}|\boldsymbol{\Theta}) = \sum_{k=1}^{K} \pi_k \cdot \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu_k}, \boldsymbol{\Sigma_k})$$

 $\mathbf{x}$  is a d-dimensional vector, or a data  $\pi_k$  sum up to 1, each in [0,1]

$$p(\mathbf{X}|\Theta) = \prod_{n=1}^{N} p(x_n|\Theta)$$
 (for N data points)

Maximize log-likelihood:

$$\Theta_{ML} = \arg\max_{\Theta} \{\log p(\mathbf{X}|\Theta)\}$$

$$\log p(\mathbf{X}|\theta) = \log \prod_{n=1}^{N} \sum_{k=1}^{K} \pi_k \cdot p(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_k \cdot p(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

上面对  $\mu_j$  求偏导,令为 0,就得到 EM 中的式子

- No closed-form solution to Gaussian, mutual dependency, so apply iteratively
- EM algorithm
  - 1. Initialize means  $\mu_j$ , covariances  $\Sigma_j$ , and mixing coefficients  $\pi_j$  and evaluate the initial log likelihood.
  - 2. E-step: Evaluate the responsibilities using the current parameter values:

$$\gamma_j^{new}(\boldsymbol{x}_n) = \frac{\pi_j \cdot \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sum_{k=1}^K \pi_k \cdot \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}$$

3. M-step: Re-estimate the parameters using the current responsibilities:

$$\begin{split} & \boldsymbol{\mu}_{j}^{new} = \frac{\sum_{n=1}^{N} \boldsymbol{\gamma}_{j}^{new}(\boldsymbol{x}_{n}) \, \boldsymbol{x}_{n}}{\sum_{n=1}^{N} \boldsymbol{\gamma}_{j}^{new}(\boldsymbol{x}_{n})} \\ & \boldsymbol{\Sigma}_{j}^{new} = \frac{\sum_{n=1}^{N} \boldsymbol{\gamma}_{j}^{new}(\boldsymbol{x}_{n}) \big(\boldsymbol{x}_{n} - \boldsymbol{\mu}_{j}^{new}\big) \big(\boldsymbol{x}_{n} - \boldsymbol{\mu}_{j}^{new}\big)^{T}}{\sum_{n=1}^{N} \boldsymbol{\gamma}_{j}^{new}(\boldsymbol{x}_{n})} \\ & \boldsymbol{\pi}_{j}^{new} = \frac{\sum_{k=1}^{N} \boldsymbol{\gamma}_{j}^{new}(\boldsymbol{x}_{n})}{\sum_{k=1}^{K} \sum_{n=1}^{N} \boldsymbol{\gamma}_{k}^{new}(\boldsymbol{x}_{n})} \end{split}$$

- 4. Evaluate the new log likelihood  $\log p(\mathbf{X}|\Theta^{\mathrm{new}})$  and check for convergence of parameters of log likelihood ( $|\log p(\mathbf{X}|\Theta^{\mathrm{new}}) \log p(\mathbf{X}|\Theta)| \le \epsilon$ ). If the convergence criterion is not satisfied, set  $\Theta = \Theta^{\mathrm{new}}$  and go to step 2.
- EM apply to partitioning:

$$Cluster(\mathbf{x}_n) = argmax_{k \in \{1, \dots, K\}} \{ \gamma_k(\mathbf{x}_n) \}$$

• Properties:

Better than K-Means on clusters of varying size and differing variances Local maximum

O(tnk); however t tends to be high

- Initialization for centers:
  - 1. Multiple random starts
  - 2. Use K-Means centers
- Choose k
  - Silhouette coefficient only works for partitioning
  - Maximum likelihood estimation is non-decreasing on k

Deterministic (add a function increase on k):  $\log p(\mathbf{X}|\Theta_K) + \mathcal{P}(K)$ 

Stochastic: MCMC

# Clustering 3

- Partitioning and hierarchical methods are designed to find spherical-shaped clusters, use density-based for arbitrary shape
- 1. Core object is those has at least MinPts within circle ε-radius, including itself: |N<sub>ε</sub> (q)|≥
   MinPts
  - 2. p directly density-reachable from q: q is core,  $p \in N_{\varepsilon}(q)$
  - 3. p density-reachable from q: q is core, p within a chain of directly density-reachable; not symmetric
  - 4. p density-connected q: symmetric, can be both non-core, general than density-reachable; c(o1,o2) and  $c(o2,o3) \Rightarrow c(o1,o3)$ ; DBSCAN use this
- Density-based cluster:
  - 1. maximality: p in S and q is density-reachable from p, then q in S
  - 2. connectivity: each density-connected to all others in S

Density-based clustering:

- 1. Density-based clusters and noise
- DBSCAN algorithm:

```
for each o ∈ D do

if o is not yet processed then

if o is a core-object then

collect all objects density-reachable from o

and assign them to a new cluster.

else

assign o to NOISE
```

density-reachable objects are collected by performing successive e-neighborhood queries

每次一网打尽整个 cluster,assign noise 是暂时的,可以被 assign 到新 cluster 书中一个点不会被放到多个 cluster,ppt 没有明白表示

- K-distance(p): distance from p to its k-nearest neighbor (including itself)
- K-distance plot: k-distance of all objects, sorted in descending
- Setting of  $\epsilon$  and MinPts:
  - a. Fix MinPts (default: 2\*dimension 1)
  - b. User selects ε from MinPts-distance plot (by looking for dramatically drop)
- Pros:
- 1. Clusters of arbitrary shape (not convex)
- 2. Number of cluster no need to decide
- 3. Separate noise
- 4. Use spatial index structures O(n log n), without O(n2)
- 5.  $N_{\epsilon}$ -query: O(n)
- Cons:
- 1. Difficult to determine parameters (比如 distance plot 整个平滑,所以 就有了 hierarchical clustering)
- 2. Sensitive to parameter setting
- Hierarchical clustering

Dendrogram(系统树)

Can be agglomerative or divisive

Leaf is a single object

Internal node is the union of two sub-trees

Height of internal node represents distance of two children

- Agglomerative hierarchical clustering
  - 1. Initially, each object forms its own cluster
  - 2. Consider all pairwise distances between the initial clusters (objects)
  - 3. Merge the closest pair (A, B) in the set of the current clusters into a new cluster  $C = A \cup B$
  - 4. Remove A and B from the set of current clusters; insert C into the set of current clusters
  - 5. If the set of current clusters contains only C (i.e., if C represents all objects from the database): STOP
  - 6. Else: determine the distance between the new cluster C and all other clusters in the set of current clusters; go to step 3.

就是挑最相近的两个 cluster 合,然后替换成新的,计算新的到别的 cluster 的距离

Distance for clusters

Single-Link: 
$$dist\_sl(X,Y) = \min_{x \in X, y \in Y} dist(x,y)$$

Complete-Link: 
$$dist \ cl(X,Y) = \max_{x \in X, y \in Y} dist(x,y)$$

Average-Link: 
$$dist \ al(X,Y) = \frac{1}{|X| \cdot |Y|} \cdot \sum_{x \in X, y \in Y} dist(x,y)$$

Divisive hierarchical clustering (DIANA)

Select the cluster C with largest diameter for splitting

Search the most disparate observation o in C (highest average dissimilarity)

- 
$$Splin Group := \{o\}$$

- Iteratively assign the  $o' \in C \setminus SplinterGroup$  with the highest D(o') > 0 to the splinter group until for all  $o' \in C \setminus SplinterGroup$ :  $D(o') \leq 0$   $D(o') = \sum_{o_i \in C \setminus SplinterGroup} \frac{d(o', o_i)}{|C \setminus SplinterGroup|} - \sum_{o_i \in SplinterGroup} \frac{d(o', o_i)}{|SplinterGroup|}$ 

$$D(o') = \sum_{o \in C \setminus SplinterGroup} \frac{d(o', o_j)}{|C \setminus SplinterGroup|} - \sum_{o \in SplinterGroup} \frac{d(o', o_j)}{|SplinterGroup|} = \sum_{o \in SplinterGroup} \frac{d(o', o_j)}{|SplinterGroup|}$$

挑最与众不同的点,然后看 cluster 中和它平均距离比到补集近的点,排序挑下一个 最刺头的过去,直到剩下的到 splinter 的距离比到补集的远

Agglomerative vs divisive

Divisive is conceptually more complex

Agglomerative on local patterns

Divisive use complete information

Core-distance:

If q is core object w.r.t. ∈ and MinPts, then smallest distance such that o is a core object Else undefined

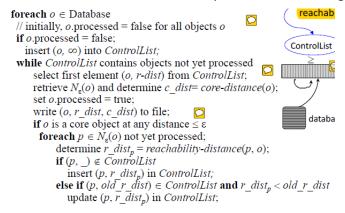
Reachability-distance: minimum radius value that makes p directly density-reachable from

If q is core object w.r.t.  $\epsilon$  and MinPts, then max{core-distance(q), dist(p, q)} Else ∞

**OPTICS:** 

the core distance is also exported, but this is not required for further processing

#### controlList is sorted with reachability-distance in ascending



## 可以看成波的传播

ControlList 可能会剩下,只看有没有还没 process 的

Plot in the order of file, against reachability-distance

图里对于 undefined, ∞就是画满 y 轴

Performance 和 DBSCAN 类似,O(n log n) with spatial indexed support, O( $n^2$ ) without Insensitive to parameter settings, need MinPts, and  $\epsilon$  to be large

Hierarchical clustering discussion

Pros:

- 1. No number of clusters
- 2. No or robust parameters
- 3. Hierarchy of clusters

Cons:

- 1. Runtime for agglomerative O(n² log n)总共要 n 轮,每次都排序挑最小, divisive O(2<sup>n</sup>), OPTICS is better
- 2. User has to choose final clustering
- Evaluation of clustering result

Expert

Internal: like silhouette or sum of square errors (或者说 variance)

$$SSE(\mathcal{C}) = \frac{1}{|DB|} \sum_{C_i \in \mathcal{C}} \sum_{p \in C_i} dist(p, \mu(C_i))^2$$

External: need true clusters

• External measures (我的是 C,真相是 G)

$$\begin{aligned} & \text{Recall: } rec\big(C_i,G_j\big) = \frac{|c_i \cap G_j|}{|G_j|} & \text{Precision: } prec\big(C_i,G_j\big) = \frac{|c_i \cap G_j|}{|C_i|} \\ & \text{F-Measure: } F\big(C_i,|G_j\big) = \frac{2*rec\big(C_i,G_j\big)*prec\big(C_i,G_j\big)}{rec\big(C_i,G_j\big)+prec\big(C_i,G_j\big)} \\ & \text{Purity (P): } P(\mathcal{C},\mathcal{G}) = \sum_{C_i \in \mathcal{C}} \frac{|C_i|}{|DB|} pur(C_i,\mathcal{G}) & pur(C_i,\mathcal{G}) = \max_{G_j \in \mathcal{G}} prec(C_i,G_j) \end{aligned}$$

Recall 就是我取得了多少,precision 就是我自己命中多少

F 是合并上两个

Purity 是每个 cluster 看最高可能的命中,然后平均

Random index:

a 是所有同时在 C 某个 cluster 里,也同时在 G 某 cluster 里的 pair

b 是处于 C 中不同 cluster,也处于 G 中不同 cluster 的 pair (n 2)是所有可能的对, n(n-1)/2

$$R = \frac{a+b}{a+b+c+d} = \frac{a+b}{\binom{n}{2}}$$

或者用 mutual information (i.e. information gain): H 就是熵

$$I(\mathcal{C},\mathcal{G}) = H(\mathcal{C}) - H(\mathcal{C}|\mathcal{G}) = H(\mathcal{G}) - H(\mathcal{G}|\mathcal{C})$$

Normalized information gain:

$$NMI(\mathcal{C},\mathcal{G}) = \frac{I(\mathcal{C},\mathcal{G})}{\sqrt{H(\mathcal{C})H(\mathcal{G})}}$$

# Classification 1

• Classification vs prediction

Classification on categorical class labels

Prediction on continuous-values functions (usually with regression)

- Nearest neighbor classifier
  - 1. NN classifier: 1-neighbor
  - 2. k-NN
  - 3. Weighted k-NN: use 3 kinds of weight
  - 4. Mean-based NN: training 时计算每个 class 的 mean, 分类就看离哪个 mean 近
- 3 weights

Standard: equal

Distance: 1/(distance<sup>2</sup>)

a-priori: class frequency, 越少见,越金贵

- Pros:
  - 1. Can be applied to non-vector data
  - 2. Only requires similarity function (i.e. metric space)
  - 3. High accuracy
  - 4. Easy to add new training data
  - 5. Robust to noisy data

#### Cons:

- 1. Implementation can be inefficient: should create index structure in training phase
- 2. No explicit knowledge
- 3. Curse of dimensionality
- Instance-based learning (lazy evaluation): k-nearest neighbor

Eager evaluation: decision tree, Bayes classifier

# Classification 2

#### Decision tree:

Tree construction
 Greedy algorithm

Condition to stop:

Belong to same class

No remaining attributes - majority voting

No samples left (nothing has this as value, use majority of all examples this round)

Algorithm:

ID3(Examples, ClassLabels, Attributes)

Create a Root node for the tree;

If all *Examples* have the same *ClassLabel*, return *Root* with corresponding label; If *Attributes*=ø, return *Root* with label = most common value of *ClassLabels* in *Examples*;

A=the 'best' decision attribute for next node

Assign A as decision attribute for Root

For each possible value  $v_i$  of A:

Generate branch corresponding to test  $A = v_i$ ;

 $Examples_{v_i}$  = examples that have value  $v_i$  for A;

If  $Examples_{v_i} = \emptyset$ , add leaf node with label = most common value of ClassLabels in Examples; Else add subtree ID3( $Examples_{v_i}$ , ClassLabels, Attributes\{A});

每一次挑最好的区分, 然后分

Split strategies:

Need to be disjoint and complete

• Information gain:

$$entropy(T) = -\sum_{i=1}^{k} p_i \cdot \log_2 p_i \qquad \text{for } k \text{ classes } c_i \text{ with frequencies } p_i$$

注意是2为底的

information 
$$gain(T, A) = entropy(T) - \sum_{i=1}^{m} \frac{|T_i|}{|T|} \cdot entropy(T_i)$$

Gini index

$$gini(T) = 1 - \sum_{i=1}^{k} p_i^2$$
 for  $k$  classes  $c_i$  with frequencies  $p_i$ 

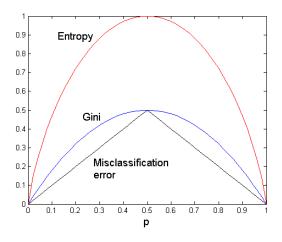
$$gini_A(T) = \sum_{i=1}^{m} \frac{|T_i|}{|T|} \cdot gini(T_i)$$

• Misclassification error

$$Error(T) = 1 - \max_{c_i} p_i$$
 for  $k$  classes  $c_i$  with frequencies  $p_i$ 

$$Error_A(T) = \sum_{i=1}^m \frac{|T_i|}{|T|} \cdot Error(T_i)$$

• Summary: all of the three need to be the small the better



2-class case

Types of split

Categorical: 1. equal 2. subset

Numerical: 1. cut with one < (can order test samples and consider every mean of adjacent two samples) 2. Intervals

Tree pruning

1. Prepruning:

Halt before goodness measure falling below a threshold

Like using minimum support: minimum number of data objects a leaf node contain Minimum confidence: minimum fraction of the majority class in a leaf node But prepruning is difficult to set appropriate thresholds and has less information for

2. Postpruning

Reduced-error pruning:算法 1

- Decompose classified data into training set and test set
- Create a decision tree E for the training set

decision than postpruning, so worse quality

- Prune E by using the test set T
  - determine an interior node v of E whose pruning reduces the number of misclassified data points on T the most (i.e., replace the subtree) S of node v by a leaf. Determine the value of the leaf by majority voting)
  - prune
  - finish if no such interior node exists

就是每个节点,看 prune 它成 majority vote 会不会变好,最好的那个就变,直到没有能变好的为止

Minimal cost complexity pruning:算法 2

Notation: size |E| is the number of leaf nodes

Cost-complexity: measure both classification error F<sub>T</sub> and size of tree:

$$CC_T(E, \alpha) = F_T(E) + \alpha |E|$$

α 是调节树展开程度的,对于树 Ee 和{e}单个 node 这两株树

for small values of  $\alpha$ :  $CC_T(E_e, \alpha) < CC_T(\{e\}, \alpha)$ 

for large values of  $\alpha$ :  $CC_{\tau}(E_e, \alpha) > CC_{\tau}(\{e\}, \alpha)$ 

$$lpha_{
m crit}$$
:  $\mathit{CC_T}(E_e, \, lpha_{
m crit}) = \mathit{CC_T}(\{e\}, \, lpha_{
m crit})$  这里  $lpha_{
m crit}$  就是判断 tree weak 程度的标志

越小越 weak, 越先被 prune 掉

### Algorithms:

- Start with a complete tree E
- Iteratively remove the weakest link from the current tree
- If there are several weakest links, remove them all in the same step
- Result: sequence of pruned trees

- 
$$E(\alpha_1)$$
 >  $E(\alpha_2)$  >...>  $E(\alpha_m)$  where  $\alpha_1 < \alpha_2 < ... < \alpha_m$ 

- Selection of the best E(α<sub>i</sub>)
  - Estimate the classification error on the overall data set by an I-fold cross validation on the training set

本质就是随着  $\alpha$  的升高,tree 越来越简化,我们得到 a sequence of 不同程度 pruned tree,从中挑最好的。这个不像之前,不用额外的 test set

Classification rule from tree:

IF forecast = 'rainy' AND wind = 'weak' THEN playing\_tennis = 'yes'

- Pros:
- 1. Convertible to rules, represent explicit knowledge, intuitive to users
- 2. Can be categorical or continuous-valued
- 3. Hierarchical and linear
- 4. Fast learning speed
- 5. Fast classification speed
- 6. Accuracy is good

### Cons:

1. Not stable, small changes of data, large change of tree

### Bayesian classifier

• For an object o, see it possibility in class Ci

$$\underset{c_{j} \in \mathcal{C}}{\operatorname{argmax}} \{ p(c_{j}|o) \} = \underset{c_{j} \in \mathcal{C}}{\operatorname{argmax}} \left\{ \frac{p(o|c_{j}) \cdot p(c_{j})}{p(o)} \right\} = \underset{c_{j} \in \mathcal{C}}{\operatorname{argmax}} \{ p(o|c_{j}) \cdot p(c_{j}) \}$$
Value of  $p(o)$  is constant and does not change the result.

p(cj)就是这个 class 在所有数据里面的比例 p(o|cj)这个才需要建立模型或者是 count frequency

• p(o|cj)的三种估计方法

parametric method: single gaussian distribution non-parametric methods: kernel methods

mixture models: mixture of Gaussian

但是上面的多维高斯会 curse of dimensionality, naive Bayes 应运而生

Naive Bayes classifier:

data has d dimensions, need to be conditionally independent, i.e.

$$p(o|c_j) = p(o_1, ..., o_d|c_j) = \prod_{i=1}^d p(o_i|c_j)$$

那么接下来就是求 p(oi|Cj)

Categorical: relative frequency

Continuous: possibility distribution, 比如在某个 single Gaussian 中

$$p(o_i|C_j) = \frac{1}{\sqrt{2\pi}\sigma_{i,j}} e^{-\frac{1}{2}\left(\frac{o_i - \mu_{i,j}}{\sigma_{i,j}}\right)^2}$$

然后用 Bayes 来分别算就成了

Calculate the probabilities for both classes:

With: 
$$1 = p(high|q) + p(low|q)$$

$$p(high|q) = \frac{p(q|high) \cdot p(high)}{p(q)}$$

$$= \frac{p(age = 60|high) \cdot p(car\ type = family|high) \cdot p(max\ speed = 190|high) \cdot p(high)}{p(q)}$$

$$= \frac{N(27.67, 13.61|60) \cdot \frac{1}{3} \cdot N(222, 36.49|190) \cdot \frac{3}{5}}{p(q)} = 15.32\%$$

这里应该没有算 p(q),直接用和为 1 算两个比例

Bayesian classifier (之前的是 naive 的,其实没必要,只要能算概率)
 比如全都变成相关 Gaussian

$$P(o \mid C_j) = \frac{1}{(2\pi)^{d/2} |\Sigma_j|^{1/2}} e^{-\frac{1}{2}(o-\mu_j)\Sigma_j^{-1}(o-\mu_j)^T}$$

 $|\Sigma j|$  is determinant of  $\Sigma j$ 

Two limits:

几个 class 概率都很低就不分类了

概率相同,则不知如何

- Pros:
  - a. High accuracy
  - b. Adopted new training objects easily
  - c. Can incorporate expert knowledge to the prior of P(Ci)

Cons:

- a. Often conditional probabilities not available
- b. Curse of dimension
- Independence hypothesis

Pros:

Efficient computation

Optimal classifiers

Break limitation: Bayesian networks, decision trees

Evaluation of classification

Separate data to 2 sets, one for training, one for testing

If not possible, then

#### m-fold cross validation:

- a. equally into m subsets
- b. iteratively use m-1 to train, 1 to test
- c. combine m accuracy values to an overall accuracy, combine m generated model to an overall model

#### leave-one-out:

- a. special case of cross validation with m equal to size of data set |O| = N
- b. so, left only 1 to be test, accuracy = right/|O|
- c. good for nearest-neighbor classifiers
- Measurements

Classification Accuracy:

$$G_T(K) = \frac{|\{o \in T, K(o) = C(o)\}|}{|T|}$$

Classification Error:

$$F_T(K) = \frac{|\{o \in T, K(o) \neq C(o)\}|}{|T|}$$

就是正误比例,和为1

Resubstitution error:

$$F_{TR}(K) = \frac{|\{o \in TR, K(o) \neq C(o)\}|}{|TR|}$$

(true) classification error:

$$F_{TE}(K) = \frac{|\{o \in TE, K(o) \neq C(o)\}|}{|TE|}$$

就是在训练集和测试集山的错误率

Overfitting

Reasons:

- a. bad quality of training data
- b. different statistical characteristics of training data and test data

to avoid it:

- a. removal of noisy and erroneous training data
- b. appropriate size of training set
- c. appropriate samples
- underfitting
- Summary:

|                           | <b>Decision Trees</b>                 | k-NN classifier                          | Bayes classifier                                |
|---------------------------|---------------------------------------|------------------------------------------|-------------------------------------------------|
| Compactness               | Compact if pruned                     | No model                                 | Model dependent                                 |
| Interpretability of model | Good                                  | -                                        | Model dependent                                 |
| Explanation of decision   | Good<br>rules for decision<br>known   | Medium-Good decision<br>object set known | Medium-Good probabilities of decision are given |
| Training time             | Low-Medium                            | No training                              | Model dependent                                 |
| Test time                 | Low                                   | Low (index)<br>Very high                 | Model dependent<br>but often Low                |
| Scalability               | Good                                  | Good (index)<br>Bad                      | Model dependent but often Good                  |
| Robustness                | Low                                   | High                                     | High                                            |
| Data types                | Categorical and vector                | Arbitrary data (need distance function)  | Arbitrary data (need probability distribution)  |
| Model                     | Set of (axis parallel)<br>hyperplanes | Model free                               | Statistical density distribution                |