Advanced Machine Learning — summary

Table of Contents

(01 - T £ =T ot T 14 o J OO OO PPRPPPPPR 1
Chapter2liNEar-TEEIESSION. ...ttt ettt ettt et ettt e st e e bt e e bte e s ab e e st e e s beesbeesbteensbeesabeesabeeenses 2
Chapter3liNEar-rEBIreSSION.uiiieeeeeeeeccitiite e e e e eecccrre e e e e e e sttt e e e e e e e e e sssbaaeeeeeeeesanssraaeeeeeeesnnstaneeeeesann 3
ChapterAgaUSSIAN-PrOCESSuuvrrreeeeeeeeieittireeeeeeeseittereeeeeeesaasstaaeeeeeeeasassareseeeesssaasssasassesesanassrsnneeeesan 4
Chapter5gaUSSIAN-PrOCESSuuvrireeeeeeeeieitteeeeeeeeeieittrreeeeeeesaarsraaeeeeeesesassraaeeeeeesesasssaseeseeesanansranneeeesann 6
ChapterbapproXimate-iNfErENCEii ittt et e s be e e 7
Chapter7approXimate-iNfErENCEccui ittt st e sate e sbe e sbeeeaee s 10
Chapter8linear-disCrimiNaNtS........cou ittt et e s be e s baessaee e sabeessbeesbaeesareas 13
ChapterOnNeUral-NEIWOIKSeviiiiee et e s e e et e e et e e e sntee e e snaeeeennnees 17
Chapterl0backpropPagationccecieccier i e e e rree e e e s e e e st e e e e snree e esnnreeeennnees 19
(@0 F=T o1 =T o oY a1 0172 4 o o SRS 22
Chapterd20ptimizZationc..iocieeiieeie ettt et e e st e s bae s ateesabeesnbeeebeeenareas 26
(01 Ty =T ot 12l o DO USSP 26
ol s =T o1 41 i 7 1ol ¥ o TR SPSTPRPPRRRP 27
(o] 0T o 1= g Yl] o S 28
Chapterloword-emMBEATINGSccccciiieeiiee e e e e e s e e s et re e e e snteeeesnnteeeesnneeeeennsees 29
(@ 0 F=T o101 74 o o o TSR 31
(O 0 F=T oY T 2] o o o USRS 32
ChapterloreinforcEmMENt-IEAIMINGccccuvei ettt e et e e et re e e e sttae e e snraeeeenraeeeenrees 35
QUESTIONS: . e 36

Chapterlintro

® Nonlinear function of x, but linear function of the w;.
® Sum-of-squares error:

1 N
E(W) = 5 Z {y(l?n,W) - tﬂ}Q

Z PP BT 2E square, PDAIXFESR FEH0E w BIZtE, A ME—f#
® Least-Squares regression 455 (Z FrUIA MRS, HLHE Xin 1, w il wo) :

w = (XXXt
® Root mean square error(RMS) CF 2 KUAZ BIERLA 2) @ Erms= v (2E(w*)/N)
1. Division by N lets us compare different data set sizes;

2. Square root ensures Eguys is measured on the same scale as the target variable t
Ridge Regression:

E(w) =

1 o A
2 2
5;{y(:cn,w)—tn} + 5wl

® Multi-dimension Gaussian:

_ 1 1 Tea—1
N(x|p, X) = WQXP{—E(X—N) X (X—#)}
® Maximum likelihood systematically underestimates the variance of the
distribution(frequentist concept)
® Maximum likelihood of Gaussian:
., N N

#—ﬁnz_:lxn o W _l(xn_;u)
L(0)=p(X| 0)

@)L(8)p(0 0)L(0)p(6
p($|X)_/p($)L©O)P®) , _ [P(l6)L(O)p6) ,

p(X) J L(6)p(0)do

FEREERMWBEMZE, ECH X XMW EEHL T, M theta 1 posterior(Hf
L*p/normalization), L p(x| 0)32 H I x Rl EEME. CTRHEEE MR

Chapter2linear-regression

® Least-squares regression is equivalent to Maximum Likelihood under the assumption of
Gaussian noise.

o PWX,t,0,a)cp(t|X,w,5)p(w|a)

B AR AT R (1)
® Maximum-a-posteriori: A~ NEHHL LS HIRM 44015, A prior, Z A2 %A

%, LAt S E0 regularization, M =a/B (o2 w % Gaussian 434 [precision)

® |2-regularized regression (Ridge regression) is equivalent to MAP estimation with a Gaussian
prior on the parameters w.

® DK bayesian (JFEE s(x)2, HIIILEZ HTH] maximum likelihood B B4 £ R~, 1HZ
X B EIUNAKER T x, F7~ uncertainty of wo IXFEH EIR, ANE]) x X WA 206 R] (8 5 2
A AFD:

p(tlz, X, t) = N(tlm(z), s*(x))

N
m(x) = Bp(z)TS D p(xn)t
s(z)> =371+ o(x)"So(x)

N
S =al+8Y d(xn)p(x,)"
n=1

Chapter3linear-regression

® Under Squared loss, the optimal regression function is the mean E [t|x] of the posterior p(t|x);

E TSI R y()HE RN mean 1, FLLHAY mean prediction
® Squared loss is poor choice when conditional distribution p(t|x) is multimodal
® Jiy S

{y(x) = 1}? = {y(x) - Elt|x] + E[t[x] — t}?

= {y(x) —E[x]}* + {E[t[x] — 1}*
+2{y(x) — E[t|x]H{E[t[x] — t}
(AWNEIFS

E[L] = f {y(x t\x]}g p(x) dx + f var [t|x] p(x) dx
Wy N
BT IUAIL T mean, }:Iﬁmz intrinsic [] variability of target data, ANAJVH[R
® Minkowskiloss (/% square loss f] A HAh) -

L(t, y(x)) = [y(x) — ¢/

Conditional mean: g=2; conditional median: g=1; conditional mode: =0

® y(x,w)=w'd(x)
Basis functions:

1. linear :®4(x)=xq

2. Polynomial: ®j(x)=x

o;(x) = eXp{—M}

252

3. Gaussian:

4. Sigmoid:

S'(t) = SE)(1 — S()) (x5 491 sigmoid 1% 4 WG, BBk SEIT)

(p is global, g&s are local)
® Multiple outputs: i.e. T becomes matrix

W = (@Tc‘p) ~ T

B H Sz S A M A OB 2 RFE—IR, AHK
® Least-mean-squares(LMS) algorithm: stochastic gradient descent (Z Error BR w 3R GRED

wl™l = w) _yVE,
® Regularizer: g=1: Lasso; q=2: Ridge; q=0: Best subset selection
® Lagrange multiplier: L(z,y,A) = f(z,y) + A (g(m,y) B C)

FA% B H SFeB0E T A3 AR A B3 L R T AR R (B AR UE BRI AR A A #8525)

FIRRAE e X BS TR UGN, AT BAYE .

® Regularized least square: sparsity for g<=1: minimizations tend to set many coefficients to 0

® Regularizer SEPr FAT1S R IAEA ST AN S EIHE, FirLLs2 bias-variance [trade
off

® Llasso /% Ridge #FEH closed form solution . 1My HLi& S A ¥ , E quadratic programming.

B S SH0N 0, perform model selection.

Lasso (g = 1) is the only norm that provides sparsity and convexity

Non-convexity makes the optimization problem more difficult

Ridge regression is also the posterior mean, but the lasso and best subset selection are not.

L2 regulatization with Gaussian prior, and L1 with Laplace centered on zero;
http://stats.stackexchange.com/questions/177210/why-is-laplace-prior-producing-sparse-

solutions
http://stats.stackexchange.com/questions/182098/why-is-lasso-penalty-equivalent-to-the-

double-exponential-laplace-prior

Chapter4gaussian-process

k(x.x') = p(x)Tp(x)

Kernel:

Kernel a.k.a. covariance function
Kernel function is symmetric
Linear kernel:k(x,x’)=x"x’

Kernel Ridge Regression:

N

J(w) = El) Z{ngb(x,r,,) — t,,}z + %wTw

n=1

http://stats.stackexchange.com/questions/177210/why-is-laplace-prior-producing-sparse-solutions
http://stats.stackexchange.com/questions/177210/why-is-laplace-prior-producing-sparse-solutions
http://stats.stackexchange.com/questions/182098/why-is-lasso-penalty-equivalent-to-the-double-exponential-laplace-prior
http://stats.stackexchange.com/questions/182098/why-is-lasso-penalty-equivalent-to-the-double-exponential-laplace-prior

X ridge regression /N5 4z B3

1 1
J(a) = iaTKKa —a'Kt + itTt + %aTKa
K a, AW T AHS

y(x) = wlo(x) = al ®¢(x) = k(x)T (K + My) 't

Kernel

pros: FJHEA BRI kernel B3, LLERANE basis function P fi3fedl; BERIE, WLAAAN
18 basis function; 1] LARX} & 4E

Cons: {7fi 2% [A] NM->N2; compute matrix inverse of larger, M2->N?2

Take any set X’ and any function & : X' < X' — R.

If k is a positive definite kernel, then we can use k to learn a
(soft) maximum-margin classifier for the elements in A

To kernelize an algorithm: write the algorithm only in terms of inner products; replace all inner
products by kernel function evaluations (not guarantee for better performance, choice of k
and model selection are important)

_ T
Linear regression model: y(X, W) =W Qb(X) SRIGTRA T w B K Gaussian 73 AR 11
p(w) = N(w|0,a"'T)

M4y FE Gaussian AT HIZEME, /& Gaussian. (Gaussian process 1L /& H 4%
function y —> prior, TMdE4: w — prior, FIHIHLZH linear regression AbFH i gaussian
process I+
Bly] — B3] =0
1

covly] = Elyy?] = OE[wwT]|®” = E(INI)T =K

A Gaussian process is a collection of random variables any finite number of which has a joint
Gaussian distribution

Gaussian process

f(x) ~ GP(m(x), k(x,x"))

is completely defined by:
Mean function:

m(x) = E[f (x)]

Covariance function:

k(x,x') = E[(f(x) —m(x)(f(x) = m(x))]

Consistency Requirement or Marginalization Property: examination of a larger set of variables
does not change the distribution of a smaller set. (iX & Gaussian process HJ4F &)

) Y1 X2 y 2
Ui, 4a) ~ Npe, X — I
) = A . [221 EEJ IS -'/\/“*‘51) 11)

Squared exponential(SE)(XY radial basis function(RBF) or Gaussian):

coxlf).)] = K xg) = exp{ ~ ey = ol

TRIGERfRZ, W T SEXFIHIT 2, THEAZR xp, xq W72, EHKEXE, HEE M
AN, ¥Rk variance A 1 11

1. We choose a number of input points X«

2. We write the corresponding covariance matrix (e.g. using SE) element-wise:

K(X..X,)

3. Then we generate a random Gaussian vector with this covariance matrix:

I NN(OvK(X*vX*))

® Gaussian process with noisy(noise-free FL% A 4Lt 77):

f, = K(X,,X)(K(X,X)+02I) 't

covlf,] = K(X,,X,) - K(X,,X) (K(X,X)+c2I)" K(X,X.)

Explanation: the predictive distribution is a Gaussian whose mean and variance depend on the test

points X. and on the kernel k(x,x’), evaluated on the training data X.

WEREEWE, A noise, {EEHE RHEA FWELR, T noise, BUE— R

® Gaussian process vs Basis function model:

Train: O(N3) (5t /& T kernel 5[5 3R); Test: O(N2) Train: O(M3); Test: O(M?2)

® GP infeasible for large training sets while basis function model is more efficient; however, GP
can model covariance functions that can only be expressed by an infinite number of basis
functions.

2 {_ (xp — %4)°

ky(Xp,Xq) = 0} exp WE } + 0200
o

SE covariance with hyperparameters is above: signal variance & 2%;range of neighbor

influence(length scale) I; observation noise &%, ; Hr 1i#kk, PREGRFHE

® SVM A T kernel

Chapter5gaussian-process

® GPregressionalgorithm (gpmlP37,f|X:=N(0,K); y|f:=N(f, o .2). AN R T t Sy
AR

DV = k(e X)) — VTV

input: X (inputs), y (targets), k (covariance function), o2 (noise level),
X, (test input)

: L := cholesky(K + o2I)
% Zijé\EL) } predictive mean eq. (2.25)
vi=L\k,

} predictive variance eq. (2.26)

logp(y\Xl = 7%‘»‘70‘ — > ;logLi; — §log2m eq. (2.30)

: return: f. (mean), V[f.] (variance), logp(y|X) (log marginal likelihood)

fo = KD (K +021) 't
cov[fy] = k(xu,x.) -k (K +021) 'k,

1 9 N1 1) . N
logp(t|X) = —§tT (K—l— Jif) t— §log|f& +o2I| - ?log 27
® Bayesian model selection:
1. Lowest level: w, e.g. parameters of a linear model;
2. mid-level: 0, e.g. controlling prior distribution of w;
3. top level: typically discrete set of model structures Hi

p(wly,X,0,H;) =

p(¥| X, w. H;)p(w|60,H;)

2 X, 6.H) p(y|X.60,H;)

[31, w. Hop(wl6. M) dve

T denominator Y5 marginal likelihood (4 — 2 # & ait, 4 — 2 #F model selection)

log probability

To learn different parameters of Gaussian Process, inference one level at a time.

It automatically incorporates a trade-off between the model fit and the model complexity

This model selection require evaluation of several integrals, which may or may not be

analytically tractable, depending on details of the models.

However, GP regression models with Gaussian noise are exception: integrals are tractable and

the models are flexible.

40

201

== minus complexity penalty \

data fit \
— marginal likelihood \
-100 !

an?

characteristic lengthscale

Chapter6approximate-inference

N 2@

Approximation schemes:

Variational methods: never generate exact results, but scalable

Sampling methods: can generate exact results, but computational demanding, limited to small-

scale(limit time and computational resources)
Sampling:

Mﬂ:/jwmwm

1=1 (L2 HEFR, FHELZE sample J77%)

® Sampling challenges:

1. Might not be independent

2. F(z) small in region p(z) large and vice versa=> need large sample sizes
® Transformation method: iHid pdf 15 cdf, #AJ5 K

F(z) = f " p(2)dz

—0C

w ~ Uniform(0,1) = F~(u) ~ p(x)
® Exponential distribution:

py) = Aexp (—Xy)

Cdf:

h(y) = 1 —exp (—Ay)

Inverse of integral:

y=hy)™' =-A"n(1-2)

® Cauchy distribution: https://en.wikipedia.org/wiki/Cauchy distribution

1 1
Tl+y?

py) =
Cumulative distribution function:

F(2;0,1) = © arctan(z) + ~

T; = — arctan(x —

’ T 2

Inverse of integral: tan
® Box-Muller algorithm(Gaussian is not possible by transformation):

Generate pairs of uniformly distributed random numbers z1,z22 €(-1,1)

N

Discard each pair unless it satisfies r’=z12+z2%<=1
3. This leads to a uniform distribution of points inside the unit circle with p(z1,z2)=1/n
4. For each pair z1,z2, evaluate

_9lnr2\ Y3 _olnr2\ 3
Y1 = 21 (72) Yo = 22 (72)
r r
6(21,22)
by, Yy = Plz1,% Y
(91,32) (21, 22) (Y1, y2)

_ L/Lz_w exp(—y%/z)] [\/% exp(—yé/Q)}

5. Y1,y2 are independent Gaussian N(0,1)

https://en.wikipedia.org/wiki/Cauchy_distribution

If y ~ N(0,1), then oy + 1t ~ N(p,0?)

Ancestral sampling:
Principle: joint probability factorizes into conditional probabilities

= H p(zk|pag)
k=1

Start with lowest-numbered node and draw a sample form its distribution
Cycle through each of the nodes in order and draw samples from the conditional
distribution (where the parent variable is set to its sampled value

Zp ~ p(n|pay,)
Logic sampling:
Extension of ancestral sampling with some nodes are instantiated with observed values
Don’t agree, then whole sample is discarded
Probability of accepting a sample decreases rapidly as the number of observed variables
increases=> not practical
Rejection sampling:
1. Generate a number z0 from q(z).
2. Generate a number u0 from the uniform distribution over [0,kq(z0)].
3. If u0>p~(z0) reject sample, otherwise accept
Limitation: high-dimensional spaces

k=(o,/0c,)”
D AR kARK, T3 52 E AR /N

Importance sampling:

Method approximates expectations directly (but does not enable to draw samples from p(z)
directly, XAl rejection sampling & A—FE 1))

B p(2) NFE, (ERFIIE p~(2), & NFBEERHETIRE g~(2), LAIER &
A FRINVE. Z Frbhantl, 28 T % sample &, 1M uniform) grid sampling it /2%
TRAEOL, BEOAMR BREAME, Bt ABCRANGF

[f@ptadn =3 f 2 s ~ e S

p(z")

="~
' G(20)
2 JE it £ ratio

Z, 1 [p(zV 1,
7= g; o= [e £

L
E[f] =~ Z w f(z)
=1

(z")
_ (zY)

Tl
P p(zCm))
2m T 2 m qz0m)

Importance sampling depends crucially on how well the two distribution match

M;‘FU/

~

w; =

If none of the samples falls in regions where p(z)f(z) is large:

1. The results may be arbitrary in error;

2. Nodiagnostic indication(no large variance in 1)

So q(z) should not be small or zero in regions where p(z) is significant

Chapter7approximate-inference

® Sampling-Importance-Resampling(SIR)
Draw L samples z(*),..., z(L) from ¢(z).|

Construct weights using importance weighting

_ p(z")
T G(z(1)
w; = Z — — (1(%(23'11))
7 P
m - m Zm q(z0m)
and draw a second set of samples z("),..., z(L) with probabilities
given by the weights w(),..., w(&).

The resulting L samples are only approximately distributed according to p(z), but the

distribution becomes correct in the limit L->c0

® Both rejection sampling and importance sampling scale badly with high dimensionality
2
p(z) ~ N(0,1), q(z) ~N(0,0°I)

Rejection sampling: fraction of proposals accepted: O -b

o2 D/2
_ —1
Importance sampling: variance of importance weights: (2 - Ufﬂ)
® Rejection sampling, importance sampling and SIR: based on independent samples/ sucks in
high-dimension
® Metropolis algorithm:
q(zAlzB) = q(zB|24)

Proposal distribution is symmetric:

A(z*,2") = min (1, %)

Fromz' ->z*, SZHLELE random u uniformly from (0,1), accept sample if A(z*,z")>u, 75 W £

FRERE CAEFE), M FE—A sample HILIR 2 X
Property: if q(za| zs)>0 for all z, the distribution of z" tends to p(z) as Yy ->c0

The samples are highly correlated, we can obtain (largely) independent samples by retaining
every Mt sample

® Markov chains properties:
First-order(NiZ 28 AT — WA RN, MANTERIX B p, B z2m->zm DR, g A—
¥£) Markov chain:

Marginal probability:

p (z(erl)) — Z D (z(erl)'z(m)) P (z(m))
)

o

A Markov chain is called homogeneous if the transition probabilities p(z™*) | z(™) are the
same for all m.

A distribution is said to be invariant (or stationary) w.r.t. a Markov chain if each step in the
chain leaves that distribution invariant

Transition probabilities(& X):

T (Z(m), Z(m+1)) =p (Z(m+1) |Z{m))

For homogeneous Markov chain, distribution p*(z) is invariant if:
* ' *(!
p(z) =S T(2.2)p*(2)
zn’

a given Markov chain may have more than one invariant distribution(%1 & transition
probabilities are identity transformation, I\ 44T distribution #{/& invariant)

Detailed balance is a sufficient (but not necessary) condition to ensure that a distribution is

*) / * ! 1 !
z)l'(z,z)=p(z)](z .z
invariant:p() () p() ()
S T2 = Y P @@ d) = (@) Y () = '@
T = - z'

(B IX —HB 13X A48, invariant 52 55 USRI 7046, T detailed balance #fi /2 It
A —AN/INRE R, BV EA R A S5 B0 homogeneous TR 6F— GRALHRFEFE T, 4l
R ERFFAZK)

Ergodicity(Z Al /& i Ji 45 A 5, XA 2 PR UEISH 45 R Y condition)

Mixture distributions:

K
T(z',2z) = Z axByi(2',2)
k=1

a,>0and X, o), =1

XA R O R R 54— &, LU each base transition only change a subset of
variables

' K& base #B invariant B{#f detailed balance, 54 &t kAR E
® Metropolis-Hastings algorithm:

A generalization to Metropolis: proposal distribution not required to be symmetric

p(z*)qr (27 |2¥)
(27 gr(z*[2(7)
K labels the members of the set of possible transitions considered; Ft &2 BT &, 3N

T gk 3TN, & Gibbs B p(zk| z\)

iEBH invariant:

A(z*,z) = min (1

o Bl
Alw2) = {1’ 520]7) }

p(2)qk(2'2)Ar(z',2) = min{p(z)qr(2'|2), p(z')qr(z]z')}
= min{p(z')ar(z|z), p(z)qr(z'|2)}
#(2)ar(2'|2)Ar(2,2) = p(z")ai(2]2') Ax(2,2)
2)T(z',z) = p(z')T(z,2)

® Random walk: after N steps, distance on average proportional to + N; central goal in MCMC
is to avoid this property

® Example: a common choice of proposal distribution is a Gaussian centered on the current
state, and the variance of the proposal should be the same order as the smallest length scale
0 min(larger rejection high, smaller walk long).
1. Number of steps to arrive at state independent of origin is O((¢ max/ © min)?)
2. Strong correlations(max/min % 55t 2312 K) can slow down the Metropolis(-Hasting)

algorithm

® Gibbs sampling
A special case of Metropolis-Hasting
Idea: update one coordinate at a time by replacing z by a value drawn from p(zi| zy); cycling
through all variables or choosing the next(5t /& 1,2,3 i)

Z£T+1) -~ p(ZQ‘Z:(LT+1)’ Z:g’i'))

The algorithm always accept!

A(z*2) = p(2*)qr(z|z*) _ p(zZ\Z’\‘k)p(Z*\‘k)p(sz’\‘k) 1
’ p(z)an(z*|z) p(zr|z\i)p(2\e)p(2]205)

¥ _
Z T 2y,

q{(z*|z) = p(z",]z,) and p(z) = p(z,|z,) p(z)

Benefits ;e &/, UfFH:

p(Ti, X))
Paion) = 5= s

1. Discrete:

2. Continuous: often univariate
Graphical model F1 ancestral sampling 2524
Strong correlation also slow down Gibbs sampling(O(L/l)?):

,,2 L

L

Y

/

1

Burn-in: F55HFLIBEHEN equilibrium IRZSH n 4> sample
{EZEFRATTAS FIIE W i 4 42 long enough
fit 1k dependent: 1.thinning, keep only Mth;2.use Monte Carlo estimator on all samples
® Summary:
MCMC:
a) simple & effective
b) typically computational expensive
c) scales well with dimension
Gibbs:
a) Used in practice
b) Parameter free

c) Requires sampling conditional distributions

Chapter8linear-discriminants

® Linear discriminant function:

T
y(X) = WX + wy
w is called a weight vector, and wO is a bias. The negative of the bias is called a threshold

R, 4R, W w AR CRAEHE wo)

(w,wO0)2& D 4iia~F- 1, 1 H.it D+1 4 expanded input space J&i A
2-class . sum-of-squares error KK fi#

E(W) = %Z (wan — tn)2

n=1

OE(w) Z (wan — tn) X, = XXTw — Xt L 0

n=1

w o= (XXT) "Xt

14k 2 exact, closed-form solution
K-class(output use 1-of-K notation):

T ,
w(X) =W X twpo, k=L Kge s, wmnas,
B AR & w=(wl,w2,...wk))

N K
E(W) = Z Z (y(xn; Wk) - tkn)z

n=1k=1
1 e e
= JTr {(XW T (XW — T)}

Tr is trace, 5t /& 77 BE#HG M B A
W =XT=(X'X)"'X'T
] LA H 45 5 N2 exact, closed-form. &5 954 & J5 LA x w42 v, HP discriminant function
b sum-of-square XJ ¥ least-squares J5i%, @l 2 sensitive to outliers & penalizes
predictions that are “too correct”

Generalization to linear model:
1. Activation function:

T
y(x) = g(w x+wo)
a) If gis monotonous, the resulting decision boundaries are still linear functions of x
b) Can bound the influence of outliers and “too correct” data points
c) If using sigmoid for g(), we can interpret y(x) as posterior probabilities
2. Basis function:

M
(%) = Y wijd;(x) + wro
7=1

Basis functions allow non-linear decision boundaries

But minimization no longer in closed form
KN BT, % F closed-form, FiTLLH] gradient descent >k minimize iteratively towards local
minimum(T T IX PR £ R 2 2T U2 delta rule)

W7D D)y IE W)
Y Y Owrj |y
Tr NPIR:

Batch learning & sequential updating [X 5l & E(w)— N2 E A, —/ 2 sample
22 sum-of-squares error:

M

ye(x) = glar) = g | Y wicj(xn)

J=0

Generalized linear discriminants:

Pros:

a) g &fiallow us to address linearly non-separable problems

b) simple sequential learning approach using gradient descent

Cons:

a) limited by curse of dimensionality(g & fi often introduce additional parameters)
b) linearly separable case often overfitting

Logistic regression: this is a model for classification rather than regression

p(Cl¢) = y(¢) =o(w' @)

p(Ca

¢) = 1—p(Ci|o)

Properties:
a) Focus on decision hyperplane
b) Advantageous for high-dimensional spaces, requires less parameters than explicitly modeling
p(P|Cx) and p(Ck)
® Logistic sigmoid:
1
Definition: 1 4 exp(—a)

a=1In (7)
Logit function (inverse): -7

Symmetry property:

o(—a)=1—-o(a)

dj:a(l—a)

Derivative: da

L Cross-entropy error function:

t|W H yn {J‘ l/n}l o

X 73K negative log-likelihood(t, J& T-{0,1},1f yn J& T-(0,1)) 43 2 T

E(w) = —lnpt|w)

— Z {talny, + (1 —t,)In(l —y,)}

n=1

® Gradient of cross-entropy error function (X% w K5 -

Yn = O-(Wqun)

% = yn(l _yn)(pn
N
VE(W) = Z(yn - t"l)qbn
n=1 (R B

1H = 3 sigmoid with cross-entropy Fll linear regression with sum-of-squares /] gradient —#¥,
R
(r+1) _ _(7))
wkj - wkj](Uk (Xna W) - tkm)qu (Xn)
AN X 512 sequential estimation is slow

new) __ (old) —1
wo) = w VEM)(H & E#f w IFCR S)
W(new) _ w(old (@TR‘I)) JQT(V t)
((I)TR‘I) {(I’TR@W (old) (I’T(y _ t)}
= (#"R®)"'®"Rz

® Newton-Paphson:

(IX &%} sigmoid with cross-entropy)
® Newton-Raphson gives exact solution in one step for linear regression model(ix 5. _I1ij F Y
#& sum-of-squares error); but IRLS to logistic regression model with cross-entropy error ([%]
N R depends on w) ; also IRLS to multiclass logistic regression with cross-entropy error
® logistic regression property:
a) Directly represent posterior distribution
b) Requires fewer parameters than modeling likelihood + prior
c) Cross-entropy error is concave: unigue minimum, but no closed-form solution, iterative
optimization(IRLS)
d) Both online and batch optimization exist
e) Tends to systematically overestimate odds ratios when sample size is small
® Softmax regression: (5t &1 target{0,1}28 % 1-of-K i K-class ¥ /&)

exp(ar)

Ej exp(a;)

Error function:

Yl exp(w, x)
Ew) = =) % 31(ta =k)In 0t
n=1k=1 ijl eXp(Wj X)
N
Ve EW1, o Wi) = (Unj = tnj) by
n=1

® Comparison of error functions:
a) Ideal misclassification error: ideal but not differentiable, and gradient is 0 for misclassified

points
b) Squared error: closed-form solution; but sensitive to outliers and penalizes “too correct”
c) Cross-entropy error: concave, unique minimum exists, robust to outliers; but no closed-form

solution, requires iterative estimation(rescaled by 1/In(2)4"14(0,1))
d) Hinge error: leads to sparse solutions, not sensitive to outliers; not differentiable around

z=1(cannot be optimized directly)

E(z)

Chapter9neural-networks

® SVM:
L w43 (-)
“Irlelﬁ}j 5 / 7 nY (Xn +
N n=1 g Y
L, regularizer “Hinge loss”

(2], = max{0,x}.

® Perceptron:

y1(x) y2(x) yr(x)

Output layer
Weights

Feature layer

Mapping (fixed)

Input layer
L1 T2 Tq

Linear outputs:

d
yr(x) = Y Wiid(z:)
1=0

Logistic output:

) d
y(x) =0 (Z Wf.:if:)(i'i))

i=0
Remarks:

1. Perceptrons are “generalized linear discriminants”
2. Feature functions @(x) are fixed, not learned

Error(tn x&{-1,1}, AR¥E L4 HIWT 2class):

Ep(w) ==Y _ wio,ty
neM

Learning(2# IS LN 1, A1 sample 4~ update):

w™) = w™ _ yVEp(w) = w™ + 5o, t,

Perceptron learning corresponds to 1%-order gradient descent of a quadratic error function

Loss functions(7E 7 hinge loss H-MNIN5, Hi2M 0 kb, H max):

L2 loss) = Least-squares regression
Lit,y(x)) = 32, (y(xn) — tn)

L1 loss: = Median regression
Lit, y(x)) = En ly(xn) — Ll

Cross-entropy loss = Logistic regression
Lt y(x)) = - Zn {tnlny, + (1 —t,)In(1 - y,)}

Hinge loss = SVM classification
L{ty(x) = T, [1 — tay(xa)],

Softmax loss = Multi-class probabilistic classification

L(t,y(x) = ~ T, Ty {1600 = Ky in SR

39

Can apply different regularization(and different error function) to perceptron:

sparsity;L2(weight decay)
Limitations of perceptron:

Fixed, hand-coded input features; not flexible
Multi-layer perceptrons(Rfii i _F I 1171 @, 2% >] features):
y1(x) y2(x) yr(x)

Output layer

Hidden layer

Input layer

L1 for

h d
2 1
yn(x) = g Z Wlii)g(l) Z Wi(j)333'
i=0 §=0
Activation functions g™ (just for examples):

9% (a) = o(a), gV(a) = a

(EE, B multilayer perceptron, {HH /& sigmoid IXFl, differentiable, il A /& step)
® Hidden layer can have arbitrary number of nodes, can be multiple layers

® 2-layer network (1 hidden layer, enough nodes) can approximate any continuous function of

a compact domain arbitrarily well

® More linear units no help, fixed output non-linear not enough, so need multiple layers of

adaptive non-linear hidden units

Chapterl0backpropagation

® Gradient descent(Z 2 &M%, F IR EFT w):
1. Naive analytical differentiation(L &% B4~ w, I ATA B2 ET):

0z Onr 0z Oy n
C Oy1 Oz Oy Ox

Cons: Increasing depth, exponential paths, infeasible to compute

2. Numerical differentiation

Make small changes to W and accept those improve E(W)

Cons: inefficient, several forward pass(run entire dataset) for each weight

3. Backpropagation

Core steps:

a)

b)

Apply an input vector x, to the network and forward propagate through the
network using (5.48) and (5.49) to find the activations of all the hidden and

output units

4= wpn hiaj)

¢ and *J
Evaluate the & for all the output units using (5.54).

5 — ur — 11
Ok Uk Tk G m bR fossR, S5t EER B BRI target X4

L/ 3]s aT LAl), BRwnhnAS sigmoid W19, 2 3 y(1-y) BRI AT)
Backpropagate the &’s using (5.56) to obtain §; for each hidden unit in the
network(yE&E N A SRFEXT k).

6; = h'(aj) Z Wy jOk

k

d) Use(5.53)to evaluate the required derivatives(zi /& forward i} 2 %1 1],dynamic
programming).
OE,
f)l("ﬂ B

(UEHH: i->j->k; aj RSN TIAT, zj 42 h 5 5T H)

Algorithm:
Forward Pass Backward Pass
0) — OE __ 0 d
y =X h(—w—EL(t,Y)‘F)\a—yQ

for k=1,...,1do
z(k) — W(k)y(kfl)

for]f—lll ., 1do
() —h®9(y(k))

k) _ k
y " = gi(2™) BE, — hy*-DT 4)
endfor oW () W(k)
OE k)T
y:y(l) h%m—w()h

E=L(t,y)+ AX2(W) endfor
(8 15378 element-wise product)
4. Automatic differentiation
a) Convert the network into a computational graph

b) Each layer/module specify how it affects the forward and backward passes
c) Apply reverse-mode differentiation

y = module.fprop(x)

aa—f = module.bprop(%)

Computational graph(— >\ AT, — AN\ &R, #42 O(edge), (H A7 R O(input)):

‘erentiation @ ferentiation

"- % m
ary node w1th

BN?A

Forward-Mode Differentiation (ix)

g

oz)
ox /8 o /O\ Apply operator d%(
BX BX =EsPER) u+j+7)(5+ +0) to every node.
\CO/

Reverse-Mode Differentiation (3)

<

\

Apply operator ()‘Z
Sz H) ay —a+e+§ —o—> to every node.

(1IX /& deep learning libraries 1751, x, y, and intermediate results are stored in the
module)
® Common non-linearities

gla) = a(a) ==

I+exp{—a} - 4 4 i : 3

1. Sigmoid:

00-

g(a) = tanh(a)
= 20(2a) — 1
exp{—a;}

@) = o]

-2 -1 ° 1 2 3

2. Hyperbolic tangent (tanh):

05-
0.0-

-05-

(a) = max{—l,min{l,a}}“; e S L

4, Hard tanh: g

5. Rectified linear unit (ReLU):

.
a) = max.w,; a-+b;

6. Maxout: () i { v z}“ilu Y S

(Maxout NiZ A& 14 B ES R H ok, bl RelU)

Comparison:

Output nodes:

1. Sigmoid for probabilistic interpretation(range [0,1])
2. Tanh for regression task

Internal nodes:

1. Tanh better than sigmoid since it is centered

Tanh often implemented as piecewise linear function(similar to hard tanh and maxout)

3. Historically most use tanh, recently often use ReLU for classification tasks

® Do not use L2 loss with sigmoid/tanh output(use crosss-entropy instead)(Ji K /& T 1] 41 21 2%
o, TERE B(EHIEHRAL gradient 2 0, RIEZUE)

E(Zn) Ideal misclassification error

Squared error on tanh

Zero gradient!

No penalty for
“too correct”
data points!

tn € {-1,1}

2 -1 0 1 2 n = ()

® Implementing Softmax(standard for multi-class outputs):

N K .
— Z Z I(t, =k)In ;Xp(wk X)T

i1 > j—1 exp(w; x)
1. Do not compute first softmax, then log. But instead directly evaluate log-exp in the

denominator(iX 5 H% /% In Exp — In (Sum Exp), FHI T, " LLE—B %, @i

81001=91000*E)

N N
lugZ('xp{.r:“} =a+ longxp{n:” a}

n=1 n=1
3. softmax has the property that for a fixed vector b:
softmax(a+b)=softmax(a)
5 /&t subtract the largest weight vector wj from the others(/&4¢ N IH X AN 7 AE _FH K2
A).

({J -—t"J]T xli

@) _ 4100
p(y" = jlz";0) = =TT

Ty Tl
T =k _gTLo0 o—uTz(®
E et e v
=1
UZ!_'..EJ}

Zi 1"{JfT .

Chapterlloptimization

® stochastic learning: choose single; estimate is noisy;
pros:
a) usually much faster;
b) often better solution;
¢) can be used for tracking changes
® batch learning: process full;
pros:

a) conditions of convergence well understood;

b) many acceleration techniques(e.g. conjugate gradients) only in batch learning;

c) theoretical analysis of weight dynamics and convergence rates are simpler

minibatches: process only a small batch of training examples together; start with a small
batch size and increase it as training proceeds;

pros:

a) gradients more stable than stochastic, and faster to compute than batch;

b) take advantages of redundancies in the training set

c) matrix operations are more efficient than vector operations

caveat:

error function should be normalized by the minibatch size, s.t. we can use same learning rate

between minibatches
A

E(W) = % S Lt ylxai W) + 5 W)

shuffling:

a) choose sample most unfamiliar(class A, B, A, B)

b) present large-relative-error input more frequently(be careful with outliers)
(stochastic and monibatch F,batch JCATiE shuffling)

Data augmentation(apply all):

a) Cropping(VI%, EE—#7r, %K)

b) zooming

c) flipping
d) color PCA
Pros:

a) larger training set

b) robustness against expected variations(reduce overfitting)

When testing:

a) Need to apply cropping again

b) Beneficial to apply flipping

c) Applying several ColorPCA get improvement, but increase runtime
Normalizing the inputs(iX 25— JZ#Ri&E H)

ALe® A
..... Mean
(J Cany
o0 ancellation
L .‘...
L — o e
> o200 >
o9 KL
Expansion
Covariance
Equalization
o 0® ° [
[
oo o 0 deGer >
L RS

a) Normalize all inputs units to 0-mean, unit covariance

b) Decoorelate them using PCA(KL-transform)

Choosing sigmoid:

Symmetric sigmoids(e.g. tanh), converge faster than logistic sigmoid(0,1)

f(z) = 1.7159 tanh (Zz)

(variance of the outputs will be close to 1 because the effective gain of the sigmoid is roughly

1 over its useful range)

Initializing weights

Assuming: training set has been normalized; recommended sigmoid(abovel.716) is used
Initial weights should be drawn(uniform of normal) with 0-mean and variance

2 1
Ow = Nin
(nin is the fan-in, incoming connections of the node)

variance of uniform distribution:
1
2 2
o= —(b—a
B ()

Glorot(—Fh s ik):
Var(Y) = Var(W1 X; + Wo Xy +--- + W, X)) = nVar(W;)Var(X;)
4 Var(Y)==Var(X), n B L2 in, HA[LLZ out, FTLAZHMIFR:
2
Nin + Nout

V6 V6
\/nin + Nout J \/nin + Moyt
Extension to ReLU(max{0,a}, L [/%1 %] tanh IXFi X FR)
Var(W) = —

TNip

ZHTAS R R AL R, WIaatl, S Ak, T2 gradient descent /54 RE T AFH

converge

Choosing learning rate(—#43 #7):
The learning rate of lower layer should be larger than that in higher layer(#ii !)Z)

Var(W) =

W~U|—

In one dimension and E is quadratic, optimal learning rate is inverse of Hessian:

EEWm)\
TNopt = (W}

(& N &M B 1-d, quadratic Error K, H —HE converge)

E{w) E(m)
: | \ /
|

\ \ /
\\‘Ii n< Tlopt ,f \ n= T]opl /J

N/

e e :-Donh"‘?-.__l_t go beyonc:'l‘-

/
S
a) min

o o . this point! |
\ ! \ 2 I 5
INLES [‘\wj_i lom [] L ‘ .
Al
r— e b e
)

C,

® Momentum:

a) Dampen oscillations;

b) Build up speed(velocity) in directions with consistent gradient
(decay mu <1, dx il /& x 4L gradient descent)

v = mu * v — learning rate * dx
X = v

mu FiL/E NI alpha

L THE 3 alpha £ 1 MFRATTIEE FTLAAEH K, converge SR
FHiE/) alpha=0.5, 2 534K 0.9,0.99.
® Nesterov Momentum(iifi /2 & 2IWF, HIRH gradient; t make mistake F correct):

x _ahead = x + mu * v

v = mu * v — learning rate * dx ahead

X t=v

a) first jump in the direction of previous accumulated gradient
b) then measure the gradient where you end up and make a correction
® I learning rate WS E AN, W2 RAT, T KE WK learning rate, L[
momentum M ¥ T] LUFIT R [RMSprop 45 &gk —i A
® Separate adaptive learning rates:
- OF
—EGij %

) oOF
if(d 0 (t—l))>0

A’IU ij —

(t)

then g;;(t) = g;;(t — 1) +0.05
else g;i(t) = gij(t — 1) * 0.95

8’&)?;_;; awi_,-

gij W /& local gain, start with 1. — 13} oscillation, local gain decay rapidly
® RMS(root mean square):

1
e = [(B a3+ ad).

® RMSProp(better than Z i) separate adaptive learning rate):

2

MeanSq(w;;,t) = 0.9MeanSq(w;;,t — 1) +0.1 (aff?- (t))

Divide gradient by sqrt(MeanSq(wi;,t))

Motivation:

a) Magnitude of gradient can be very different for different weights and may change during
learning

b) ZEIANHHAT sign of BAE, &H T batch. {HZ#EZF] minibatch, FAIELEH
RMSProp, 47 HIRNS F T —2% .

® AdaGrad, AdaDelta, Adam(iX/2& H i Ff)

Saddle points dominate in high-dimensional spaces, so be patient

® Reducing learning rate(iX & 7E 2 BT FE 58, &5 IZRINE convergence M EX):
a) Reduce learning rate by factor of 10

b) Continue training for a few epoch
c) Do this 1-3 times, then stop
® Epoch vsiteration: if you have 1000 training examples, and your batch size is 500, then it will
take 2 iterations to complete 1 epoch
® Batch normalization(improves convergence, more important for large dataset than dropout):
batch normalization happens to introduce some noise into the network, so it can regularize the
model a little bit(FT LA eliminates the need of dropout in some cases)
idea: introduce intermediate layer that center the activations of the previous layer per minibatch
i.e perform transformation on all activations and undo those transformations when backprop
gradients

® Dropout(a regularization method):

W

Present with Always
probability p present
(a) At training time (b) At test time

(training B/ BX randomly #% p % switch off, backprop 41X sub-network, {H& test i f
HH L, Akt p S5

Chapterl2optimization

The same

Chapter1l3cnn

Cnn:

® CNN learns the values of these filters on its own during the training process (although we still
need to specify parameters such as number of filters, filter size, architecture of the network
etc. before the training process)

® All neural net activations arranged in 3 dimensions(width, height, depth)

® Convolution Z J5%5| X\ non-linear. tanh or sigmoid can also be used instead of RelLU, but
ReLU has been found to perform better in most situations

® Pooling I %A EHE K, convolution I AJ LA stride 1,2,3..

® 1[L) 0-padding, B # ¥ A padding, A filter ANV K J7HEA

®)5 Fully connected layer is multi layer perceptron. Use softmax(4f4b+& sum of output
probabilities==1)(or SVM) in the output layer

® Filter weights are shared between locations=> gradients are added for each filter location

® we can have multiple Convolution + ReLU operations in succession before a having a Pooling
operation

® input 32*32*3, convolution filter 5¥5*3,12 /™, #itH 7] LA 32*32*12 (= E 2 filter —
SEE T depth, HEREIAZ 145

® Prefer a stack of small filter CONV to one large receptive field CONV layer, 3 I~ 3*3 [¥] conv
layer BE—id, H=JZHA 7*7 WAEF, (HH 3*3*3 NS4, AR 7*7. 1 HILH)Z
[E] non-linearities, more expressive. “4%RSEFriz R A B, 52 need more memory
to hold all the intermediate CONV layer results

chapterl4cnn

® visualizing ConvNet:

Layer Above -
Reconstruction i Pooled Maps
Switches 7

r Max Pooli
Max Unpooling ﬂ w ax Pooling
N7]

[Unpooled Maps] Rectified Feature Maps ‘
Rectified Linear Rectified Linear
Function U Function
l Rectified Unpooled Maps | ‘ Feature Maps]
Convolutional H Convolutional
Filtering {F'} Filtering {F}

‘ Reconstruction] l Layer Below Pooled Maps ‘

Layer Abov

Riconstriction ﬂﬂ “ H&D | Pooled Maps
Unpooling a - Pooling
. Max Locations D 13 S0

“Switches”

N o
0 (LD
'Qﬁﬁgimw}ﬁmqﬁﬁﬁi

AT —#E, 8RR T — M MI#ABOY 0, SR JERYE Bl I A% 4% £ pixel

J£1411Y DeconvNet

Convolutional layer]/ : regular convolutional layer with its filters transposed

Max-pool ffJ/: record where maximums originated from in forward propagation, placed

there(SR 2*2 #P WK max 1K)

ReLU FJ [EL#%1d — ik RelU RIHAJ

AN T B RS IEFER UL, R R T 1R

Occlusion experiment:

Mask part of the image with an occluding square, monitor the output
® Inceptionism:
AR O 1, IR 0, BEEE AR RE, BB ETHE, ARHEIEE .
AR RS, Start with an image full of random noise, then gradually tweak the image towards what
net considers a banana. Impose a prior constraint on the image, e.g. neighboring pixels need to be
correlated
H iV : simply feed the network an arbitrary image or photo and let the network analyze the
picture. We then pick a layer and ask the network to enhance whatever it detected. Each layer of
the network deals with features at a different level of abstraction, so the complexity of features we
generate depends on which layer we choose to enhance

chapterl5cnn

® residual network(ResNet):

H(x)
identity

weight layer

relu

2 weight layers used to fit H(x), now fit F(x)

a) Ifidentity is optimal, it is easy to set weights as 0;

b) If optimal mapping closer to identity, easier to find small fluctuations

c¢) Direct path for gradient to flow to the previous

Property:

a) Almost all 3*3 convolutions

b) Spatial size/2=>filters*2(same complexity per layer)

¢) Batch normalization

® Applications of cnn

Transfer learning with cnn:

If small dataset: fix all weights, retrain classifier(f% 5 #J FC A1 softmax)

If medium: use old weights as initialization, train full or some of higher layers(J& JL1> conv DA J% fc
Pl M softmax)

R-cnn:

a) extract region proposals(selective search iX #& B] —ANHE)

b) Use pre-trained&fine-tuned classification network as feature extractor on those

regions(bounding box regression and SVMs)
Bbox reg || SVMs Classify regions with SVMs
Bbox reg || SVMs

y
/£

Bbox reg | | SVMs Forward each region

ConvNet through ConvNet

ConvNet

y - 4 Warped image regions

faster r-cnn:
infer region proposals from same CNN, feature sharing, joint training, object detection in a single
pass

¢, four losses

yendence on
gion proposal

A ..
er region proposals / ;
"
‘om same [

Region Proposal Network

ng
action in
;s becomes N I
y
L 77 —
Vg™ loss

® Fully convolutional networks for semantic segmentation

All operations formulated as convolutions

Can process arbitrarily sized images

FCN can be think of a sliding-window classification, producing a heatmap of output scores for each
class

FCN output has low resolution; perform upsampling to get back to desired resolution and use skip

connections to preserve higher-resolution information (J&& /& encoder-decoder architecture)

Chapterl6word-embeddings

® N-gram method: count as probability;
Problems: scalability; partial observability(3F A& WML H] 0, MEX 2 0)
® Word embeddings are a successful applications of unsupervised learning. They don't require

expensive annotation, but can be derived from large unannotated corpora that are readily
H

available (JA] @& SHKEL)

%0 mapping to hidden units
skip connections

x; lo

Many parameters:
W,,., gets huge!

® word2vec and GloVe are geared towards producing word embeddings that encode general
semantic relationships, which are beneficial to many downstream tasks(JT A word2vec 7] LA
M cBow, FIETJLIL Ja)JLIE, i HASSG O)
® word2vec
CBOW:
projection layer is shared for all words (not just the projection matrix); thus, all words get
projected into the same position (their vectors are averaged).
Skip gram:
the output layer of the neural network is replicated multiple times; the error vectors from all
output layers are summed up to adjust the weights via backpropagation
for each training word we will select randomly a number R in range < 1;C >, and then use R
words from history and R words from the future of the current word as correct labels.

INPUT PROJECTION OUTPUT

wi(th -

Skip-gram N e

Hierarchical softmax:

The V words must be leaf units of the binary tree.

polef)=o (v, h) -
(RATRUR 150, SRERIRHRL R R normalized, 1

N1)

Output embedding for all internal nodes, |V|-1. Fl vocabulary Z /%

we are only able to obtain speed-up(log V 5 #1—2%%k) during training, when we know the
word we want to predict (and consequently its path) in advance. During testing, when we need to
find the most likely prediction, we still need to calculate the probability of all words

n(w,. 1)

n(w.2)
n(wy.3))
o O O -
woowe Wy
® Word2vec uses a single hidden layer, fully connected neural network as shown below. The
neurons in the hidden layer are all linear neurons
® i/ input FELAFEFER] hidden layer, 2R J5 e LIAERE 2 output, H softmax AbHE AT N 1,
4 backprop
® Word2vec embedding can answer analogy questions; CBOW better for syntactic; skip-gram

better for semantic
® Siamese network
contain two or more identical subnetworks; used to finding similarity or a relationship
between two comparable things; shared part of parameters
learn embedding network that preserves semantic similarity between inputs
® Triplet loss network

1£(@) = F@D); < 1£(28) - Flap)]

“

o’
Sl S

Use for face recognition; negative, anchor, positive

Chapterl7rnn

® convNet vs RNN: conv-nets take a fixed size input and generate fixed-size outputs. RNN, on
the other hand, can handle arbitrary input/output lengths, but would typically require much
more data because it is a more complex model.

® Rnn:
xO(# /& hidden state0) is provided by the user, set to zero or learned
we may not need inputs/outputs at each time step (Bl 1-many, many-1, many-many)
LSTM and vanilla RNN #{/& RNN, vanilla F| backpropagation through time, {H long-term
dependencies 2# /AN If,due to vanishing/exploding gradient. FTLL LSTM, GRU RizfZE
Unroll rnn, but remember weights for hidden layer are shared between temporal layers

YIl yHl Ytl

Jh dh; 4 &h
ho oh. (@ Oh; @ She 1 F@
< < <

Wh.hu U

w xh

1 1 1
X1 X1 Xt

Backpropagation through time:
h, = o (Wypx; + Wy hy_q +0)
y:+ = softmax (W, h;)
Ky X why (V) BT (R K E3,y3; 23=V*s3):
OF3 0FE30i3
oV Oy OV
_ 0E30y3 0z3
B g Dzz AV
= (Y3 —¥3) ® 83

JEE T XA w o h Z[E]

E=ZEt

1<t<T

9E. _ §~ (aEt%amk)

awij 1<k<t 8ht 8h,!\ 8‘&’2'_7'

oh oh; i

m_tz oh — = H W diag (o' (hi—1))
N S T

Error it /& 25 i [A] &R n—
— A5 = L Z immediate derivative, with hy as constant
=3 diag converts a vector into a diagonal matrix, and 0’ computes element-wise the
derivative of ©
® Gradient vanishing/exploding:
Exploding less notorious: exploding gradients are obvious. Your gradients will become NaN
(not a number) and your program will crash. Secondly, clipping the gradients at a pre-defined
threshold is a very simple and effective solution to exploding gradients.
If t->infinity, and |=t-k

Oy _ Oh,
Ohy, ik oh; 4
[
= (Wpn)

Largest eigenvalue>1, may explode;<1,will vanish

Gradient clipping:

Algorithm 1 Pseudo-code for nc
dients whenever they explode

A 0E

g < 59

if ||g|| > threshold then
A threshold A
€ el 8

end if

Gradient vanishing: proper initialization, regularization; 7] LA sigmoid/tanh £/i ReLU

o 24 -22 ~20
P yalue of b

Chapter18rnn

® |STM(long short-term memory):
H#5: want to achieve constant error flow through a single unit
Want the unit to be able to pick up long-term connections or focus on short-term ones(depend on

problems)

Neural Network Pointwise Vector

Layer Operation Transfer ~ COncatenate Copy

(standard rnn, simple)

1 0 — > <

Neural Network Pointwise Vector

Layer Operation Transfer Conkptenaty Copy
(LSTM, 4 layers)
C,
Ci) N\ L
pad p »

(cell state, act as a conveyor belt)

—®_

(gate, sigmoid net layers + pointwise multiplication; 0:nothing through,1: everything through; gate
layers are learned with other parameters; there are 3 gates in LSTM)

Ji=0Wy-[h1,m] + by)

(forget gate layer: O:completely delete; 1: completely keep)

iv = (Wilhi—1, 2] + by)
C‘f = tanh(We-[hi—1, 2] + be)

(update gate layer: first, a sigmoid layer called the “input gate layer” decides which values we’ll
update. Next, a tanh layer creates a vector of new candidate values, C™t, that could be added to
the state.)

Q
L
o

jtT itr-’(-_} Ct - .ft * Ct—l + ft * ét

(updating: first multiply old state by ft(forget), then add new information; it 3 /& sigmoid %
H 46 B HT scale)

Gnb> or =0 (W, [he—1, 2] + by)
hy = oy = tanh (Cy)

hea

A

(output gate layer: First, we run a sigmoid layer which decides what parts of the cell state we’re

vE

going to output. Then, we put the cell state through tanh (to push the values to be between -1 and
1) and multiply it by the output of the sigmoid gate, so that we only output the parts we decided
to.)

LSTM better than RNN:

a) More expressive multiplicative interactions

b) Gradients flow nicer

c) The network can explicitly decide to reset the hidden state

® GRU:

a) Combines forget and input gates into update gate

b) Similar definition for reset gate

c) Merge cell state and hidden state

hi—1

2 =0 (W, - [hi—1,2])
re =0 (W - [hi—1, 7))

h, = tanh (W [re * hy—1, 24))

x| hy = (1 — Zt) * hy_q1 + 2 * ;Lt

GRU similar performance, but fewer parameters(2 gates vs 3gates of LSTM)

Reset->0, ignore previous

Update->0, copy through many steps

Short-term: active reset gate

Long-term: inactive update gate

Chapterl9reinforcement-learning

b)
c)
d)

Reinforcement learning:

Agent interact with environment

Action influence future state

Success measured by reward

Select actions to maximize future rewards

Formalized as a partially observable markov decision process(POMDP)

Thus the discounting factor is a weight that controls whether the value function favors
prudent or greedy actions(if /& & future [] reward jik/|~)

use both the policy and value functions to guide the agent to learn good strategies to achieve
that outcome

expected discounted return:

Gt = Res1 + YRes2 + YRy + . = Z V*Resis1
=0

value of state under policy

Uz (8) = Ex[G,|S; = 5] = Er[Zio Y *Resrs1 St = 5]

Value of taking action a in state s under policy
qr(s,a) = E|11:[Gt|5t =5,4; = a] = Ex[¥i-0 Y*Resks |St =s,4, =d]

V function=>q function

Bellman optimality equations:
v,(s) = max 5,a
(5) = max g (5,a)

aeA(s)

= max > G rls @l +ye (0]
s'r

q.(s,a) = z p(s',rls,a) [r + ymaxq,(s’, a’)]
ar
s'r (both unique solution to this systems)

exploration(non-greedy)-exploitation(greedy) trade-off

Questions:

3, P44,yellow remark

5, P34, 51 2 i B P K R R R ?

6, P22, 1M My Fil z ()G R, HEHH jacobian T2

6, P27, 4% p B unnormalize % p~? A H q T k AHLK T ?
7, P15,variance 7& /54 5/

7, P22, XM EIREE 4

7, P25,invariant, homogeneous, PA 2 yellow remark

8, P41,yellow remark

.9, P18, SVM AT 4IE

10. 10,P15, WMRH L —Z, XTELE? Z—PKRANS?

11. 11, P15, 4% normalization ZiEE w] —2, X PMMNIZAZE
12. 11, P50, & & AR /D learning rate 2 S8R N

W N UeEWwDN R

